Seismic Performance of Buried Cables and Pot Heads

John Eidinger G&E Engineering Systems Inc. <u>eidinger@geEngineeringSystems.com</u> http://www.geEngineeringSystems.com Copyright 2017 G&E Engineering Systems Inc.

- Performance of Buried Cables in Past Earthquakes (Christchurch 2010, 2011, Napa 2014)
- Shake Table and In Situ Testing of Pot Heads (115 kV, 230 kV, 300 kV, Composite, Porcelain)
- Tests of Duct Banks
- Who has these problems on the West Coast (PG&E, BC Hydro recognizes and mitigatates. Some others have less exposure, or are "don't see don't worry (yet)"
- There are NO standards. What should we do? What about submarine cables?

Anshel Schiff: "Father" of Earthquake Performance of High Voltage Equipment

2014 Tests of 230 kV Bushing and Surge Arrestor with "pseudo" top plate of transformer, various types of conductors. PSU, BPA

New Zealand

Earthquake Level of Shaking 475 Years

Christchurch, Feb 22 2011, 1:51 pm

Looking North, from the Port Hills

Collapse of the Central Business District

Christchurch Cathedral

Orion

- 3rd largest NZ power distribution company
- \$5 million NZ spent, 1995-2009 on seismic strengthening at unreinforced masonry substations, lines and cables

Construction	Length
Туре	(km)
PILCA	1523.8
PILCA HDPE	67.1
XLPE	601.0
Unknown	24.3
Total	2,216.2

Table 7-10. Orion 11 kV Cables - Length, by Cable Type (2010)

Conductor Size	Units	Conductor Area mm^2	Length (km)
630	sq. mm.	630	3.2
400	sq. mm.	400	26.5
300	sq. mm.	300	277.0
240	sq. mm.	240	14.8
185	sq. mm.	185	215.4
180	sq. mm.	180	1.0
150	sq. mm.	150	68.0
95	sq. mm.	95	410.9
70	sq. mm.	70	41.3
35	sq. mm.	35	126.2
25	sq. mm.	25	123.8
16	sq. mm.	16	0.4
.6	British SWG	182	0.8
.5	British SWG	127	123.9
.4	British SWG	81	1.1
.3	British SWG	46	14.0
.25	British SWG	32	223.4
.2	British SWG	19	60.6
.15	British SWG	10.5	120.2
.1	British SWG	5.5	9.1
.06	British SWG	2.1	39.6
.05	British SWG	1.2	2.4
.04	British SWG	0.81	301.5
.0225	British SWG	0.25	1.8
Unknown	Unknown	Unknown	8.7
Total	Total	Total	2,216.2

Orion Inventory 11 kV

Oil Tanks for Buried 66 kV Cables.

2 of 3 were tilted on their foundations, one spalled concrete foundation....

but that is not the real problem....

o psi pressure to buried oil-filled cables (3 cables from this substation)

This is the real problem!

13

DALLINGTON Nº.2

Ib/in

kPa x 100

Buried Cable Failures in Christchurch Sept 2010: 24 Feb 2011: 433 June 2011: 63

- PILCA: 418 repairs
- PILCA with HDPE Sheathing: 10 repairs
- XLPE: 5 repairs (installed 1999 2006)
 - 1910-1919. 1 repair
 - 1920-1929. 0 repairs
 - 1930-1939. 8 repairs
 - 1940-1949. 7 repairs
 - 1950-1959. 49 repairs
 - 1960-1969. 122 repairs
 - 1970-1979. 170 repairs
 - 1980-1989. 60 repairs
 - 1990-1999. 29 repairs
 - 2000-2009. 8 repairs
 - 2010. 1 repair

Liquefaction Map for Christchurch

2

00

Blue: Sept 2010 White: Feb 2011 Red: June 2011

Shane Watson - Network Asset Manager

ton 66kV oil filled ca

mg (11 = Scale is Inches

9

20

18

Jinin + >;

160 4/2

22 23 24 25

29

28

Copper Screen

32 33 34

31

30

Metallic Screen

XLPE Insulation

HDPE Sheath

Lead Sheath

Overall Diameter: 92.5 ± 1.6 mm Net Mass: 25203 kg/km

May 6 1999 Installations

DESCRIPTION: 1 Conductor 1600 mm2 Milliken Sector Pláin Annealed Copper, Semiconductive XLPE Conductor Screen (1.6 mm nominal .II), 38/66 kV XLPE Insulated (10 mm min av wall), Semiconductive XLPE Insulation Screen (1.0 mm min av wall), Waterblocking Screen Taped, Lead Sheathed (2.0 mm min av wall), Copper Wire screened (area 119 mm2), HDPE Sheathed (3.6 mm min av wall), Graphite coated, EHV cable to AS 1429.2.

Conductor: 20.35 mm diameter, aluminum 300 mm²

Oil ducts: 12.5 mm diameter, aluminum

Corrugated aluminum sheath: t = 1.5 mm 3.7mm depth 29.3 mm pitch 0.5 mm OD; Fy (0.01%) = 34.5 MN/m^2 . Fa = 12.2 MN/m². W = 9.6 kg/m

1600Cu XLPE TRENCHING DETAILS

Oil-Filled Pipe Type 66 kV Cable - Armagh

Oil Filled Pipe Type

Polyethylene 3 mm

66 kV Oil Filled Pipe Type, Armagh

Aluminum 1.5 mm

Aluminum 20.35 mm

Oil Duct Aluminum 12.5 mm

Insulation 4.6 mm

66 kV XLPE Type

B

Several buckled cables

Two 66 kV Oil Filled Pipe-Type Cables

11 kV Cable

11 kV

11 kV - Transition from direct burial to conduit

MainPower Buried Cable Damage

M7. 2 Canterbury Earthquake of September 4 2010

Sept 4 2010. 714 am t + 3 hours

Beswick Street Dropped 6 feet... Lamp still works!

NUSSAN

Electric line is direct burial (440 V, 40 m typ)

Kaiapoi, Opposite Police Station, Williams Street

Failed Meter Service to House (Liquefaction)

Rolleston, Looking Southeast

Rolleston, Looking Northwest

Fault Crossing - Post Earthquake

Liquefaction along the Main North Line Sept 4 2010 3:14 pm

11

Liquefaction along the Main North Line Several days later

Christchurch EQ M_w ~7.1

98% Restored

Proposed 2011 earthquake work plan

Why do the cables fail?

- Choice 1 .Ground settlements to 2 to 5 cm (LESS LIKELY)
- Choice 2. Lateral cracking of top soil cap, followed by block vibration (MOST LIKELY)

Before the Earthquake

During the Earthquake

Soil cap break into independent blocks and begin to slosh around, tending towards free face

Cable Stretches

After the Earthquake (minutes)

Soil cap blocks continue to vibrate back and forth

Cable Compresses, High Curvature, Buckles and Fails

Mitigation Strategies

- Never use direct burial cables in thermal concrete in liquefaction zones.
- Use overhead (if possible)
- User buried cables in PVC or HDPE conduits within reinforced thermal concrete duct banks

Napa California August 23 2014

Distribution System

- Key findings. Napa 2014 Earthquake.
- 127 damage locations.
- 23 "types" of damage.
- Most common (53%) is overhead conductors; then overhead cross arms and overhead jumpers.
- No broken poles.
- No broken underground cables.

NAPA M 6 EARTHQUAKE OF AUGUST 23 2014

Area with PGA > 0.02g

Location of Repairs, August 24 2014 Electric Distribution System, for entire PG&E System

CALIFORNIA

NAPA

PG&E Customers without Power

Yellow: Napa Orange: Rohnert Park Green: Saint Helena Cyan: Santa Rosa Red: Sonoma Valley Grey: American Canyon Blue: Vallejo

Repairs, August 24 2014 Electric Distribution System

Repairs, August 25 2014 Electric Distribution System

Repairs, August 26 2014 Electric Distribution System D

Distribution Damage

- 166 overhead, 3 underground
- 52 fuse related
- 41 wire related
- 10 equipment related
- 6 pole / cross arm / insulator related

Correlating the Hazard and the Damage

$Damage = \sum overhead damage + underground damage$

Overhead damage = SUM[inertial, PGD]

Underground damage = SUM[inertial, PGD]

Ground Shaking Fragility Model

Underground $RR_{shake} = k1*k2*k3*k4*0.00187*PGV$, inch/sec

	111111	224 225 1990		00120010100
Case	kl	k2	k3 (age)	k4 (not used)
1. Pre 1960 overhead primaries with overhead secondaries	1.0	1.0	0.8 to 1.25	1.0
2. Post 1960 overhead primaries with underground secondaries	1.0	0.75	0.8 to 1.25	1.0
3. Underground in non-filled duct	0.3	1.0	1.0	1.0
4. Underground in filled duct	1.0	1.0	1.0	1.0

RR is repairs per 1,000 feet

Table 4-19, Repair Rate, due to Shaking

k1 = 1.0 for overhead construction with overhead secondaries. PG&E did not provide us with information about secondaries. Based on visual observations, we estimated that if the overhead circuit was installed 1960 or earlier, it was likely to have overhead secondaries; post-1960, the secondaries are assumed to be buried.

 $k^2 = 1.0$ for overhead secondaries.

k3 = 1.25 if year of construction is 1945 or earlier; 1.0 if 1946 to 1990; 0.80 for 1991 or later. For overheads, the k3 factor is thought to be a reasonable proxy for the age-related effects on wood pole and cross ann strength owing the cumulative effects of termites and wood rot. For undergrounds, the incremental strains due to shaking are assumed to not have an age related effect.

PGD Fragilty Model

 $RR_{liq} = k1 * k2 * k3 * k4 * PGD^{1.1245}$, PGD > 0.5 inches $RR_{liq} = 0$, PGD < 0.5 inches

where RR(liq) is repairs per 1,000 feet, and PGD is in inches.

Case	k1	k2	k3	k 4
			(age)	(not used)
3. Underground in non-filled duct	0.01	1.0 unreinforced	0.8 to	1.0
		0.125 reinforced	1.25	
4. Underground in filled duct	0.026	1.0 PILC	0.8 to	1.0
N14		0.80 XLPE	1.25	
		0.80 EPR		

Now, Lets Apply These Fragility Models for San Francisco in a future San Andreas Earthquake

SF Damage Forecast

Fault / Segment	М	Shaking	Liquefaction	Landslide	Total
San Andreas SAP	6.0	1.9	0.0	0.0	1.9
San Andreas SAP	6.2	5.3	0.0	0.0	5.3
San Andreas SAP	6.4	13.3	0.0	0.0	13.3
San Andreas SAP	6.6	25.8	0.3	0.0	26.1
San Andreas SAP	6.8	45.4	2.3	0.0	47.7
San Andreas SAP	7.0	77.3	6.4	0.1	83.8
San Andreas SAP	7.2	116.2	13.7	0.2	130.1
San Andreas SAP	7.4	132.6	22.2	0.3	155.1
SA SAN+P+S	7.5	139.3	28.4	0.4	168.1
SA SAN+P+S	7.7	153.1	47.3	1.4	201.8
SA SAN+P+S	7.8	160.2	60.6	2.1	222.9
SA SAN+P+S	8.0	175.0	97.0	4.3	276.3
SA Repeat 1989	7.0	1.6	0.0	0.0	1.6
Hayward N+S	7.5	36.6	4.5	0.0	41.1

Number of repairs to electric distribution system

In the High Seismic Zone along the West Coast of USA and CANADA, Who Has Buried High Voltage Cables Exposed to Liquefaction?

Transmission Pacific Gas and Electric (Lots) BC Hydro (Lots) San Diego Gas and Electric (Some) SCE (Some) BPA (Little)

Distribution Alameda, Palo Alto, Silicon Valley, PacifiCorp, Portland General Electric, Seattle City Light

Vancouver, BC (BC Hydro)

Liquefaction Map Lower Mainland

Liquefaction Susceptibility 60

D

Bedrock High Low Low to Moderate Moderate Very High

UTM NAD 83 Zone 10 (meters)

1852 Map

Zones of Primary Concern

1859 Map

Mission and 7th Street at Post Office

Dore and Bryant

Cable Terminations (Potheads):

Their Importance, Seismic Qualification, and Dynamic Characteristics

Pot Heads with Weak Standoffs (fail at PGA 0.25-0.5g)

PG&E 115 kV Pot Head Shake Table Test September 10 2013

Movie

500 kV Potheads

Instruments B and C (held with magnets)

300 kV Pothead Pirelli 1968 (CPT)

300 kVDC at CPT

X = Vertical Y = NS Hot Stick Z = EW Manshake

Field Test of 230 kV Porcelain Pothead (Camosun)

- Man-shake
- Sometimes clean response
- Sometimes not

Camosun 230 kV Pot Heads

-V

230 kV Potheads Camosun

North South Man Shake

Movie

Camosun Pot Head

ChCh Feb 2011 Bromley Substation PGA-0.5g

66 kV Potheads, Surge Arrestors, SF6 CB

Full Scale Tests - Berkeley Nov-Dec 2011

Full-scale Test 31"x 34" Cross-section

Buried Duct Bank Cross-section 31"x 34"

Full-scale Duct Bank - Fabrication

Unreinforced

Reinforced #1

Reinforced #2

Full-scale Test Summary

Test Description	Load (kips)	Ultimate Mid-span Displacement (inches)	Ultimate Hinge Rotation (radians)
Unreinforced	25.3	10	Negligible*
Reinforced #1 (Load about strong axis)	120	14.5	0.19
Reinforced #2 (Load about weak axis)	102	16.5	0.22

* The duct bank beam has almost no resistance to bending after initial cracking. Conduit susceptible to shear offset displacement at cracks.

Shear Offset Test

Shear Offset Test

Shear Offset Test

Shear Offset Test Results

Test	Gap (inches)	Ultimate force (kips)	Displace- ment at Failure (inches)
#1	0	24.7	1.89
#2	1/8	22.6	1.76

Conduit/Concrete Bond Tests Compression)

Conduit/Concrete Bond Tests (Tension)

Splice Joint (if applicable)

> Concrete encasement, 24" x 24" x 24"

Conduit/Concrete Bond Tests (Tension with no Joint)

Test setup

Tension tests without joint

Conduit/Concrete Bond Tests (Tension with Joint)

Test setup

Tension tests with joint

Conduit/Concrete Bond Tests (Compression)

Conduit/Concrete Bond Test Results (Negative denotes compression test)

Conduit Type	Slip Force (kips)		
PVC (bare)	-20.9		
HDPE (bare)	-8.6		
PVC with bell joint	-66.0		
PVC with sleeve joint	-60.4		
PVC (bare)	+1.5		
HDPE (bare)	+0.7		
PVC with bell joint	+30.4		
PVC with sleeve joint	+19.7		

Conduit Tension and Compression Tests

Specimens before

Compression test

Tension test

Conduit Tension Tests

Conduit Compression Tests

Conduit Tension and Compression

Material	Joint	Mean Comp. Cap. (kips)	Mean Tension Cap. (kips)
PVC	None	-50.3	+28.3
PVC	Bell	-33.7	+27.1
PVC	Sleeve	-51.2	+9.8
HDPE	None	-24.9	+22.9

NTT Telecommunication Research Lab, Tsukuba

- $\circ~$ NTT does not bury their cables without a conduit
- Telecom cables bundles and power cable bundles are in separate conduits
- Moisture and telecom cables cannot co-exist particularly optical fiber cables

Buried Cables

- Direct Burial: Highly Vulnerable to PGDs of 3 inches or higher
- In Empty PVC Conduits: OK for PGDs < 6 inches if slack available. Still vulnerable for High PGDs
- Duct Banks: Non-reinforced: Vulnerable.
 Reinforced: Very tough
- Pull Vaults: Detailing is critical

PotHeads

- Standoffs (porcelain and composites) are vulnerable. Age can degrade(?)
- Porcelain: Yet to fail one
- Composite: Yet to fail one

Where do we Go?

- The Industry needs a Seismic Design Guide
- Cable Manufacturers: Need to provide P, M, EI, EA, Strain to failure (axial, compression, bending)
- A/E: Need to include seismic as a load case in areas with poor soil / PGDs. Then design ducts, conduits, vaults accordingly

Who Should do this?

- IEEE 693
- PG&E and BC Hydro
- Similar issues for Communication cables, so applies to AT&T, Verizon, T Mobile, Sprint et al