Electric System Fragility SERA - ShakeMap

February 4 2022 John Eidinger ©G&E Engineering Systems Inc. 2022

Notice: this presentation is not endorsed by the US Federal Government, the USGS, any Utility or any Manufacturer. No warranty or guaranty of any sort is made by G&E or the author. This information may not be applicable to your situation. You are free to use this material if you agree with the terms and conditions on the G&E web site, NOTICES, http://www.geEngineeringSystems.com Anyone who uses this material for any purpose does so at their own sole risk and you indemnify G&E and the authors entirely. If you do not agree, do not use this material.

Agenda

- Engineers who ask Lots of Questions
- Anchorage 2018 Electric System Damage
- Empirical Data 72 earthquakes
- Test Data Modern
- Distribution Systems the \$300 Billion Elephant in the room no one talks about
- Questions and Comments

Key Points

- Substations: We have "nearly solved" the seismic vulnerability. Some utilities are well on their way to implementation. Some utilities are like Dinosaurs.
- Distribution Systems: The Elephant on the room
- How much to complete the job? Brute force = \$300,000,000 for California.
- SERA and ShakeMaps: tools to quantify, evaluate, and make smart decisions. Maybe find a \$40 B mitigation plan that does 95% of the \$300 B brute force plan.

Communication Battery

John MacKenzie, Transpower + Orion's seismic designer engineer

John and John in New Zealand

Will Liquefaction Damage a 230 kV Rigid Bus Substation at PGA = 0.5g?

Large sand boil in 220 kV Yard

When we see this..... With a little coordination, 2 months later we are going to test!

MEA Briggs Substation

Rigid Bus. Surge Arrestors. Transformer slid, breaking 2 bushings.+ 2 SAs. PGA ~ 0.30g

MEA Douglas Substation Rigid Bus Expansion Joints, Bus Supports. PGA ~ 0.30g

Excessive differential movements leads to failures Switch streel structures and bus supports use I-beams, low frequencies, twisting / torsion. All this is readily computed. Suitable connectors are available. Do utilities (and their A/Es) turn a blind eye? Sunshine will expose the weaknesses. **CEA, ML&P and MEA all have work to do.**

MEA Anderson Substation

Surge Arrestors. Circuit Switchers (candlestick breakers) PGA ~ 0.30g

MEA Pippel Substation

Candlestick Breaker. Surge Arrestors. Bus. 115 kV DS + CB. PGA ~ 0.3 ug

Damaged
Undamaged

CEA Pt MacKenzie 2018 230 138 kV Lat 61.2496 Long -150.0268

North

Key Findings

- Modern Seismic-Qualified Substations: a WHOLE LOT BETTER than what was orginally built in the 1960s and 1970s
- Old, vulnerable equipment had Fragility levels PGA = 0.2g to 0.5g
- New, qualified equipment has Fragility levels commonly PGA = 1.3g+

Why do we still have power outages?

- There remain (relatively minor) weaknesses at substations (mostly related to the bus)
- HUGE: the low voltage distribution system
 - Buried Cables: ~450 failures in 2010/2011
 - Overhead: ~1,000 failures in M 7; 50 failures in M 6.
 - What will a M 8 (San Andreas) produce: 5,000 failures? Or a Compton M 7 thrust event?

Consider the Issues

- Low Voltage: commonly 16-32 manhours per repair
- 50 repairs * 16 manhours = 800 manhours.
 - Apply 50 repair people @ 12 hours / day, you are done in 32 hours. People are "happy"
- 5,000 repairs * 20 manhours = 100,000 manhours.
 - Apply 1,000 repair people @ 12 hours / day, you are done in 8.33 days (200 hours). People are "not happy"

What should Utilities do?

- Continue procurement of IEEE 693 qualified equipment. $\checkmark \checkmark \checkmark \checkmark \checkmark \checkmark$
- Implement better cable flex bus and rigid bus detailing. $\checkmark \checkmark \checkmark \checkmark \checkmark \checkmark$
- Bury low voltage feeders (\$300 Billion for California). CEO Patricia Pope recently announced the first \$20 Billion for PG&E. 90% improvement
- Emergency plans to use 10,000 repair people. COST EFFECTIVE
- Seismic design for low voltage overheads (insulated cables, no drop spans, torsion design for elevated multi-transformers, deeper embendment in liquefaction zones). CPUC / Boards to allow this to be recovered in rates.
- "Smart" de-energization? Can reduce about 20% of overhead repairs. Unthinkable 30 years ago. Technically feasible today. Can a Utility depend on third parties? A \$10,000,000 grant from Congress's latest \$1.1 T Infrastructure plan might kick start a demonstration project - Who will step up to the plate? An investor-owned utility? A public-owned utility?

Where to get Reports

- http://www.geEngineeringSystems.com
- All free see copyright, creative commons deed on the web site
- Books (typ. 300 pages) that describe seismic fragility models for:
 - Natural Gas Pipes
 - Water Pipes (Tanks, Levees, Tunnels)
 - Electric Utility Components (new multi-volume report late 2022)
 - Non Structural Components
 - Fire Following Earthquake
- New TCLEE Reports No. 1 through 7 (earthquakes 2014 through 2021)

What is SERA?

- System Earthquake Risk Analysis
- 32 years of development
- Available by license to Utilities

SERA and ShakeMap

- SERA allows several kinds of earthquakes: Userdefined Scenario, USGS Probabilistic, ShakeMap, User-defined Probabilistic
- After most earthquakes M > 5, run SERA within a few minutes post-earthquake. If SERA predicts power outages or damage, engineers will go out to inspect and verify.
- Current Interface: ShakeMap grid.xyz or grid.xml file.
- Better interface: Stationlist.txt (the raw data)

Good, Bad, (and the Ugly)

- **GOOD.** grid.xyz files are "free". Gives a quick look at what the range of damage / power outages might be.
- **BAD.** grid.xyz Initial release files (< 1 hour) are unreliable. Beta is not 0.5±. It can be >> 0.5. Revised files might take 5+ years to create. Improper data may exist for a long time (eg. Carquinez instruments that measured bridge pounding with PGA - 1.0g are still embedded in the Napa 2014 ShakeMaps)
- Fine points. Mish mash of DYFI and instrumental values gives artificial smoothing. MMI is NOT the way to go if you want better loss estimates.
- A "**smarter**" Shakemap would use the instrumental data (from USGS) and utility-specific Vs30, GMPE, basin, liquefaction, landslide, surface faulting info.
- "**Standardized**" Shakemap files. Drudgery of writing / updating parsers and exception handling for shifting .xyz, .xml, .json, .txt, .shp file formats. PLEASE Include 'legacy'' file formats even if new ones are added.

ShakeMap SERA Merge?

- SERA 2030 vision: maintenance by the utilities.
- David Wald and crew are plenty darn smart.
- Can the US Federal Government maintain the electric grid infrastructure?

SERA MODELS - LARGE ELECTRIC

BC Hydro. 483 substations BPA. 521 substations PG&E. 981 substations SCE. 1247 substations SDG&E. 58 substations PacifiCorp. 1400 substations

Total. About 5,000 substations 350,000 transmission towers 11 million wood poles 60 million people

Epicenters of Historical Earthquakes

PG&E Service Area

72 Earthquakes 1980 - 2020, $M \ge 4.5$

plus...

\$20 Billion after M 6.0 2021

EQ	Name	M	Event Date	Max PGA, g	EventID		EQ	Name	м	Event Date	Max PGA, g	EventID
72	White Wolf	7.2	07/21/1952	0.5068	Whitewolf		28	Grapevine	4.7	09/22/2005	0.1539	14186612
29	Greenville	5.8	01/24/1980	0.2275	19800124190009	15	22	Geysers	4.7	05/12/2006	0.0551	21516950
30	Greenville	5.4	01/27/1980	0.2625	19800127023336		44	Petrolia	5.0	07/19/2006	0.0584	21527987
10	Central CA	6.1	05/25/1980	0.3050	19800525163347		27	Glen Ellen	4.5	08/02/2006	0.0958	21530368
33	Humboldt Offshore	7.2	11/08/1980	1.5237	19801108000000		14	Cobb	4.6	10/20/2006	0.1959	21543835
61	Coalinga	6.3	05/02/1983	0.7161	19830502234237	10	34	Lake Pillsbury	4.8	04/18/2007	0.0273	40195779
39	Morgan Hill	6.2	04/24/1984	0.6277	19840424211520		37	Mammoth Lakes	4.6	06/12/2007	0.1901	51182810
62	Ridgemark	5.4	01/26/1986	0.1367	19860126192051		15	Alum Rock East Foothills	5.5	10/31/2007	0.1644	40204628
63	Calaveras	5.6	03/31/1986	0.2050	19860331115540		47	Rancho Tehama	4.5	01/19/2008	0.0126	51194914
35	Loma Prieta	6.9	10/19/1989	0.7876	19891019000000		59	Willow Creek	5.4	04/29/2008	0.0658	40216664
31	Honeydew	6.1	08/17/1991	0.5780	19910817192940		16	East Quincy	4.5	12/16/2008	0.0568	51213957
43	Cape Mendocino	7.2	04/25/1992	1.1658	269151		18	Eureka Offshore	6.5	01/10/2010	0.6031	71338066
6	California City	53	07/11/1992	0.0967	19920711181416	110	49	San Juan Batista	4.5	01/12/2011	0.0663	71508850
24	Girou	49	01/16/1993	0.0959	19930116062934		45	Pinnacles	4.6	08/27/2011	0.2464	71627835
21	Gardeonille	57	00/12/1004	0.0000	10040012122242		58	Whitehawk	4,7	10/26/2011	0.1035	71671056
21	Gardnervine	3.7	13/36/1004	0.2970	19940912122343		57	Weitchpec	5.6	02/13/2012	0.2343	71734741
32	Humboldt	5,5	12/26/1994	0.1997	19941226141029		54	Taimage	4.5	09/25/2012	0.0169	71847715
51	Smith Valley	5.5	12/28/1995	0.1617	19951228182759		40	New Idria	5.3	10/20/2012	0.2514	71863625
48	Salinas	5.2	08/12/1998	0.2451	19980812141026		8	Susanville Canyon Dam	5.7	05/23/2013	0.8594	71996906
36	Mammoth Lakes	5.5	05/15/1999	0.1390	19990515132210		9	Canyon Dam	4.9	05/24/2013	0.3019	71997821
5	Bolinas	4.6	08/17/1999	0.1696	21044694		17	Eureka	6.9	03/10/2014	0.3919	72182046
12	Cloverdale	4.6	01/11/2000	0.0261	21076750		52	South Napa	6.0	08/24/2014	0.6512	72282711
60	Yountville	5.0	09/03/2000	0.3664	20000903083630		42	Parkfield	4.9	09/30/2014	0.0858	21401170
3	Blairden	5.2	08/10/2001	0.3149	21188442		19	Ferndale	5.7	01/28/2015	0.3811	72387946
46	Pinnacles	4.6	12/28/2001	0.0256	21207275		56	Wasco	4.9	02/24/2016	0.2184	37528064
20	Ferndale	4.6	04/28/2002	0.0183	21223451		1	Bayside	4.7	07/21/2016	0.0798	72654436
26	Gilroy	4.9	05/13/2002	0.4831	21254601		23	Geysers	5.0	12/14/2016	0.1124	72737985
2	Bayview	5.2	06/17/2002	0.0652	21231051	148	55	Upper Lake	5.1	03/17/2017	0.0144	72672610
50	San Simeon	6.5	12/22/2003	0.9057	20031222191558		25	Gilroy	3.3	03/06/2018	0.0099	72979736
7	Cambria	4.7	12/23/2003	0.0598	21324051		70	Petrolia	4.7	03/22/2018	0.1118	72988926
13	Cobb	4.6	02/18/2004	0.1814	21344222	10.	71	Petrolia	5.6	06/22/2019	0.4204	73201181
11	Cholame	4.7	09/28/2004	0.1411	21400461		64	Ridgecrest	6.4	07/04/2019	0.4782	38443183
4	Bodfish	50	09/20/2004	0.1411	14005638		65	Ridgecrest	7.1	07/06/2019	0.9087	38457511
41	DackGold	5.0	00/20/2004	0.1443	1403028		66	Tres Pinos	4.7	10/15/2019	1.1346	73292360
41	Parktield	5.0	09/29/2004	0.1522	21401069		69	Petrolia	5.2	03/18/2020	0.3413	73355700
38	Maricopa	4.6	04/16/2005	0.1520	14138080		68	Johnson Lane	4.5	03/20/2020	0.1500	00719663
53	Tahoe Vista	4.8	06/26/2005	0.2474	21465580		67	Bodie	5.2	04/11/2020	0.3355	73367270

Historical Earthquakes: PG&E Service Area: 1952 - 2020

Maximum Horizontal PGA (g)

Magnitude of 72 Events

Earthquake Date

9 Number of Events 1952, 1980-2021 0 4.7 ຸດ ດ ດ ຈັດ Magnitude <u>ק</u> ט 6.4 6.5 6.9 7.1 7.2 6<u>.</u>1 5<u>.</u>4 <u>5</u> З 5 N S <u>4.9</u> 4<u>.</u>8 ი .3 6<u>.</u>2 <u>5</u>.8 4 4 5 σ

Count by Magnitude, Number of Events

Maximum PGA, Anywhere in ShakeMap

_	_		
	-		

FM Damage State Description

Last Edit Date 12/20/2021

Bushing Failure

UpgradeCostSelection

Records .

() 1/22531 Found (Unsorted) .

Show All

SERA_051721

Q. Search

Layout: Equ	ipment Review	View	As 🗂 📰	88.	Preview		- 812
Substation Name		7	Voltage Tag Number(s)	115	~	Compo Lattor	m, 00 000 mm00 <u>6223</u> M, 00
Fragility SERA_Position	040 (040)		CB		SF6 Composit	e ABB Ase	a Brown Boveri
Description	C8			-	v vuteg	* 115	CHIMBD 255
twijo [8-Smail 3-way	Te2,10			THES_ID] -

													A	Edit Layou
atation_		Equip	mant Tag Num	ber		1636	DIRESS IN	1.11	Note in		Replaced	Edit Date		
POE_Location					Cast	Assigned	O Non Collina	SERA,	Model Yes	4	4			
Wanufacturer	Asea Brown Bo	overi	Model Number	121PM6330	1000	Serial Number	O Non Critical		Part No					
Install Date	11/1/2000	Purchase Date	1/1/2000	Manufact	ured Date	2/2/2000	Age	1	Years					
PGE_Voltage	115,000	Total Weight Lbe	6,587	Phases		Impedanc	Cost historic		Cost	2010				
Interrupt Medium SF6	Amps 3000	Chil Mult	Gala.	Oil Total Gala	LTC	(Put)	Coaling	Туре	Equipment	Sub Type	-			
Primary Vollage VV	Secondary Vell	age KV Tartiary Vo	Auge XV	Ass MVA Rating	1 1004	Rating 2 MVA	Nameplate M	VA TR	np Rise 'C	Prime	ry Connectio	e .		
SysStatus	UserB	latus	Year o	(Manufacture			R Componentia	0						

Photo1 Photo2 Photo3 Photo4 Photo5 Photo1_LR Photo2_LR Photo3_LR Photo3_LR Photo 4_LR Photo 5_LR Site Map

Q v

Find.

Sut

12

0 -

Sort Share

New Record Delete Record

23

And a few models and has not the second and and a second and the s	a recent of the second second
	Event Name LomaPress Morgan HB Greanste Greanste Calaveras East Footbills Ditry Coalings South Naps Nalgonan Tauristie
	GROy
	Bolmas
	San Juan Bahata
	Recommendation
buswork failed in 2007 EQ	
Original Photo: 1024 w x 768 h Thumbnail Photo: 1024 w x 768 h	Recommendation I Priority Assur

Median Bata Freq Low G

Count of times this record has been modified

Total Name

\$0

1.50 0.30 33.00 0.35 1.0 0 1 \$2.000 \$100.000 0 0 0 0

Contraction of Contraction	a page 1	and Conserve																_
Event Name	Magnitude	Event Date	No.ar 7 Equipment In Service	PGA	Number Gemaged	Number Function Failures	ST_Cest	LT_Cest	5	PGA D	autta kumber amaged	Number Function Failures	\$7_Cost	LT_Cost	35	Observed Su Function	Damag al Any	•
LomeProte	6.9	10/19/1009		0.208	9.00	0.000	80	80	0.0	0.303	0.00	0.000	80	80	9.0	S Vee	Ves.	
Morgan Hill	6.2	4241084	0	0.100	0.00	0.000	80	80	0.0	0.192	0.00	006.0	80	- 50	0.0	ST Yes	Ves	
Greenville	5.8	1/2777980	0	0.072	0.00	0.000	80	80	0.0	0.125	0.00	000.0	80	\$0	0.0	Ves.	Yes	1
Greenville	5.8	1/04/1980	0	0.073	0.00	0.000	\$0	\$0	0.0	0.123	0.00	0.000	30	\$0	0.0	TT Ves	Yes	L
Calaveras	5.6	3/31/1986		0.060	0.00	0.000	80	80	0.0	0.109	0.00	0.000	80	5	-	-	-	
East Foothils	5.5	10/01/2007	1	0.047	0.08	0.000	50	50	0.0	0.063	0.00	0.000	50	5	0.0	Ves.	Yes	
Gittoy	4.9	51152002	1	8.014	0.00	0.000	50	50	0.0	6.000	0.00	8.000	50	5	4.0	COVER 1	Ves	
Coalings	6.3	501960		0.012	0.00	0.000	80	80	0.0	0.019	0.00	6-000	50	50	9.0	Ves.	Ves	
South Nage	6.0	8/24/2014	1	0.000	0.00	0.000	\$0	80	9.0	0.015	0.00	0.000	80	80	0.0	Ves.	Vee.	
Nigenati	6.4	126/1986	0	0.006	0.00	0.000	80	80	0.0	0.011	0.00	0.000	80	80		ST.Yes	Ves.	
Tourisite	5.0	\$15,2000	0	8.005	0.00	0.000	\$0	80	0.0	0.010	0.00	0.000	80	80	0.0	C Yes	Ves	
Balmes .	5.1	6131996	.0.	0.000	0.00	0.000	80	80	0.0	0.009	0.00	\$300	80	80	0.0	25 Yes	Yes.	
Gilloy	4.8	1/16/1993	0	0.004	0.00	0.000	\$0	\$0	0.0	0.007	0.00	0.000	80	50	8.0	II Ves	Yes	
Bolmas	4.0	A-1271000	0	-0.000	0.00	0.000	50	50	0.0	0.006	0.00	0.000	\$0	50	6.0	(C Yes)	Ves.	1
San Juan Bahata	4.5	1/12/0011	1	6.000	9.00	0.000	50	\$0	6.0	0.003	0.00	0.000	\$0	50	8.0	IT Yes	Yee	
									-									

Priority Assuming	10	Selamic Hazard 0.60 PGA tel	Upgrad

Bushing 500 kV	17
Bushing 230 kV	- 9
Bushing 115 kV	14

		1.1
pradek	OpetPer	Nem

Bu

_	_	
-		

hoto1Path	IMG_1867_6.jpg
hoto2Path	
holo3Path	
hoto-IPath	
hotoSPath	[

Fragility Photo

1010

25

T.

Anyone think this is a seismically-Robust rigid bus detail?

The bus "broke".

The breaker had to be replaced

Two adjacent positions "targeted"

		Substation_ID 566
Substation Name	Abbr	ComponentID 5223
Voltage	115 ~	Latitude_DD 37.5010
Number Similar 1 Tag Number(s)	140	Longitude_DD -121.9860
Fragility ID 940 AA CB	SF6 Composite	e ABB Asea Brown Boveri
	1 10003-0003-0003	
SERA_Position		
SERA_T_Line	Voltag	115 CircuitiD
Description CB		
Tie1 ID Tie2 ID	Tie3_ID	
Slack1 RB-Small 3-way		
Slack2	PG	D Slack for Settlement
Photo1 Photo2 Photo3 Photo4 Photo5 Photo1_LR Phot	02_LR Photo3_LR Ph	noto 4_LR Photo 5_LR Site Map
buswork falled in 2007 EQ		
Original Photo: 1024 w x 681 h	Thur	bhail Photo: 1024 w x 768 h
	-	
NFM Damage State Description Median Beta Freq Low 1 Bushing Failure 1.50 0.30 33.00 0.35	G 1.0 0 1 52	ost LT_Cost 0 0 0

Description	Value	Comment
1. Count of Items	3,231,904	Includes non-exposed items
2. Count of Items	632,313	Exposed Items, 0.0001g to 1.00g
3. Max PGA level	0.87g	
 Max PGA level (5 or more items) 	0.87g	
5. Min PGA level with any type of damage	0.04g	
6. Item count with any type of damage	109	
7. Beta (composite)	0.6530	
8. Fragility (Median)	2.71g	Least Squares Regression
9. Fragility (Median)	1.80g	Running Pct weight

Voltage (kV)	Items Exposed > 0.0001g	Number Damaged	Max PGA g	Max PGA-5, g	PGA below which there is no Damage, g
500	210	0	0.32	0.32	0.32
230	2885	0	0.35	0.32	0.35
115	1856	0	0.32	0.32	0.32
69	0	0	0	0	0
LV	377	0	0.30	0.21	0.30

Table 5-3. Exposure and Damage Statistics, Air Core Reactors (AC)

Voltage (kV)	Items Exposed > 0.0001g	Number Damaged	Max PGA g	Max PGA-5, g	PGA below which there is no Damage, g
500	0	0	0	0	0
230	0	0	0	0	0
115	0	0	0	0	0
69	0	0	0	0	0
LV	4063	4	0.42	0.35	0.23

Table 5-4. Exposure and Damage Statistics, Buildings (BL)

Voltage (kV)	Items Exposed > 0.0001g	Number Damaged	Max PGA g	Max PGA-5, g	PGA below which there is no Damage, g
500	3312	0	0.33	0.32	0.33
230	9788	0	0.42	0.35	0.35
115	14390	1	0.38	0.35	0.04
69	9173	0	0.82	0.39	0.85
LV	468	0	0.25	0.25	0.25

Table 5-5. Exposure and Damage Statistics, Circuit Breakers (CB)

Voltage (kV)	Items Exposed > 0.0001g	Number Damaged	Max PGA g	Max PGA-5, g	PGA below which there is no Damage, g
500	1115	0	0.32	0.32	0.32
230	2328	0	0.35	0.35	0.35
115	1716	0	0.32	0.31	0.32
69	0	0	0	0	0
LV	0	0	0	0	0

Table 5-6. Exposure and Damage Statistics, Capacitors (CP)

Voltage (kV)	Items Exposed > 0.0001g	Number Damaged	Max PGA g	Max PGA-5, g	PGA below which there is no Damage, g
500	162	0	0.07	0.07	0.07
230	2586	3	0.35	0.35	0.33
115	7345	0	0.55	0.51	0.55
69	1803	0	0.35	0.35	0.35
LV	0	0	0	0	0

Table 5-7. Exposure and Damage Statistics, Circuit Switchers (CS)

Voltage (kV)	Items Exposed > 0.0001g	Number Damaged	Max PGA g	Max PGA-5, g	PGA below which there is no Damage, g
500	567	0	0.13	0.13	0.13
230	747	0	0.20	0.20	0.20
115	1004	0	0.33	0.33	0.33
69	96	0	0.31	0.30	0.31
LV	45	0	0.09	0.07	0.09

Table 5-8. Exposure and Damage Statistics, Current Transformers (CT)

Voltage (kV)	Items Exposed > 0.0001g	Number Damaged	Max PGA g	Max PGA-5, g	PGA below which there is no Damage, g
500	11395	18	0.33	0.33	0.31
230	110551	24	0.42	0.42	0.10
115	188334	3	0.55	0.55	0.10
69	100280	0	0.87	0.87	0.87
LV	201	0	0.26	0.34	0.25

Table 5-9. Exposure and Damage Statistics, Disconnect Switches (DS)

Voltage (kV)	Items Exposed > 0.0001g	Number Damaged	Max PGA g	Max PGA-5, g	PGA below which there is no Damage, g
500	0	0	0	0	0
230	0	0	0	0	0
115	0	0	0	0	0
69	0	0	0	0	0
LV	11121	0	0.87	0.52	0.87

Table 5-10. Exposure and Damage Statistics, Emergency Power (EG)

Voltage (kV)	Items Exposed > 0.0001g	Number Damaged	Max PGA g	Max PGA-5, g	PGA below which there is no Damage, g
500	230	0	0.24	0.05	0.24
230	468	0	0.33	0.19	0.33
115	60	0	0.33	0.10	0.30
69	0	0	0	0	0
LV	30	0	0.26	0.03	0.26

Table 5-15. Exposure and Damage Statistics, Reactors (RE)

Voltage (kV)	Items Exposed > 0.0001g	Number Damaged	Max PGA g	Max PGA-5, g	PGA below which there is no Damage, g
500	507	0	0.24	0.24	0.24
230	398	0	0.21	0.15	0.21
115	6738	0	0.35	0.35	0.35
69	0	0	0	0	0
LV	0	0	0	0	0

Table 5-16. Exposure and Damage Statistics, Risers (RS)

Voltage (kV)	Items Exposed > 0.0001g	Number Damaged	Max PGA g	Max PGA-5, g	PGA below which there is no Damage, g
500	1720	0	0.33	0.33	0.33
230	1277	0	0.35	0.32	0.35
115	1145	0	0.36	0.36	0.36
69	0	0	0	0	0
LV	0	0	0	0	0

Table 5-17. Exposure and Damage Statistics, Surge Arrestors (SA)

Voltage (kV)	Items Exposed > 0.0001g	Number Damaged	Max PGA g	Max PGA-5, g	PGA below which there is no Damage, g
500	0	0	0	0	0
230	0	0	0	0	0
115	66	0	0.02	0.02	0.02
69	52	0	0.19	0.07	0.19
LV	8170	0	0.42	0.42	0.42

Table 5-18. Exposure and Damage Statistics, Station Service (SS)

Voltage (kV)	Items Exposed > 0.0001g	Number Damaged	Max PGA g	Max PGA-5, g	PGA below which there is no Damage, g
500	785	10	0.33	0.33	0.23
230	4686	3	0.42	0.35	0.23
115	9578	2	0.55	0.41	0.09
69	13127	7	0.87	0.87	0.71
LV	8311	1	0.56	0.55	0.10

Table 5-19. Exposure and Damage Statistics, Power Transformers (TR)

Voltage (kV)	Items Exposed > 0.0001g	Number Damaged	Max PGA g	Max PGA-5, g	PGA below which there is no Damage, g
500	2860	9	0.33	0.33	0.31
230	22804	1	0.42	0.42	0.34
115	15315	0	0.35	0.35	0.35
69	568	0	0.34	0.34	0.34
LV	465	0	0.36	0.36	0.36

Table 5-20. Exposure and Damage Statistics, Voltage Transformers (VT)

Voltage (kV)	Items Exposed > 0.0001g	Number Damaged	Max PGA g	Max PGA-5, g	PGA below which there is no Damage, g
500	665	0	0.33	0.32	0.33
230	2883	0	0.42	0.35	0.42
115	595	0	0.30	0.28	0.30
69	64	0	0.34	0.29	0.34
LV	0	0	0	0	0

Table 5-21. Exposure and Damage Statistics, Wave Traps (WT)

Voltage (kV)	Items Exposed > 0.0001g	Number Damaged	Max PGA g	Max PGA-5, g	PGA below which there is no Damage, g
500	0	0	0	0	0
230	16	0	0.08	0.03	0.08
115	0	0	0	0	0
69	0	0	0	0	0
LV	17007	9	0.39	0.39	0.27

Table 5-22. Exposure and Damage Statistics, Other Equipment (XQ)

Air Core Reactors (AC)

Bin size = 0.01g

Figure 4-10.4. Number of exposures to various levels of PGA, Wave Trap Class

230 - 500 kV Wave Trap, CCVTs

F = had functional damage. D = had damage, but remained functional

SUMMARY over all records.	PGA Maximum	PGA Max-5	PSA CutOff	PGA CutOff	PGA CutOff		or lower -		1101045		2000000							Model Type @ = No data
	0.87 g	0.87 g	0.09 g	e.e4 g	0.04 g	haso	hasF	hasFD	*****	has/Cou	nt							1 = Tail Based 2 = HCLPF Based
		Running	hasD	hasF	hasFD	Running	Running	Running	hasD	hasF	hasFD	hasD	hasF	hasFD	FRAGIL	ITY MEDIAN	5 (in g)	
PGA Bin Low PGA Bin High	Count	Count	Count	Count	Count	Count	Count	Count	pct	pct	pct	pct	pct	pct	Danage	Function	DAMor/FUNC	D F FD
0.0000 to 0.0001 g	2599591	3231984	0	0	.0	51	58	109 4		0.0000000	0.0000000	0.0000158	8.0000179	0.0000337	0.0000	0.0000	0.0000	
0.0001 to 0.01 g	366015	632313	0	0		51	58	109 4	0000000.6	0.0000000	0.0000000	0.0000807	0.0000917	0.0001724	0.1175	0.1154	0.1037	111
0.01 to 0.02 g	184598	266298	0	0		51	58	109 6	0.0000000	0.0000000	0.0000000	0.0001915	0.0002178	0.0004093	0.2038	0.1989	0.1783	111
0.02 to 0.03 g	34637	161708	9	9	.0	51	58	109 6	. 0000000	0.0000000	6.0000000	0.0003154	0.0003587	0.0006741	0.2803	0.2739	0.2437	111
0.03 to 0.04 g	27674	127071	0			51	58	109 4	1.0000000	0.0000000	6.0000000	0.0004014	0.0004564	0.0008578	0.3580	0.3489	0.3109	111
0.05 to 0.05 g	16865	99397		1	1	51	58	109 4	1.0000000	0.0000593	0.0000593	0.0005131	0.0005835	0.0010966	0.4269	0.4177	0.3704	111
0.05 to 0.07 g	11483	65239		8		51	57	188 4	8.0000000	8.0000000	0.0000000	8.0007817	8.0008737	0.0016555	0.5537	0.5420	8.4778	111
0.07 to 0.08 g	8582	53756	0	0		51	57	108 4	8.000000	8.0000000	0.0000000	0.0009487	8.0010603	0.0020091	0.6087	0.5963	0.5246	111
0.08 to 0.09 g	4129	45174	9	0		51	57	108 4	8086868.6	0.0000000	0.0000000	0.0011290	0.0012618	0.0023908	0.6630	0.6481	0.5692	111
0.09 to 0.10 g	5910	41045	1	0	1	51	57	108 0	9.0001692	0.0000000	0.0001692	0.0012425	0.0013887	0.0026313	0.7224	0.7058	0.6192	111
0.10 to 0.11 g	4663	35135	4	3	7	50	57	107 0	0.0009993	0.0007494	0.0017487	0.0014231	0.0016223	0.0030454	0.7730	0.7539	0.6612	1 1 1
0.11 to 0.12 g	3231	31132	0	0		- 65	54	100 4	9.000000	0.0000000	0000000.9	0.0014776	0.0017345	0.0032121	0.8375	0.8109	0.7127	111
0.12 to 0.13 g	3104	27901	0	0		60	54	100 4	0000000	0.0000000	0.0000000	0.0015487	0.0019354	0.0035841	0.5550	0.8584	0.7532	111
0.14 Fo 0.15 g	2298	20205				46	54	100 1	1.0000000	0.0000000	0.0000000	8.88222221	0.0023300	0.0043070	0.9100	0.0101	0.8134	1111
0.15 to 0.16 g	1517	18403	0	e		45	54	100 4	8,0000000	0.0000000	0.0000000	8.0024996	8,0029343	0.0054339	1,0015	0.9694	0.8459	111
0.16 to 0.17 g	963	16886	8	0	0	46	54	100 4	6060606.6	0.0000000	0.0000000	8.0027242	8.0031979	0.0059221	1.0457	1.0107	8.8884	111
0.17 to 0.18 g	1628	15923	1		1	46	54	100 4	0.0006143	0.0000000	0.0006143	0.0028889	0.0033913	0.0052802	1.0942	1.0554	0.9189	1 1 1
0.18 to 0.19 g	864	14295	0	0		45	54	99 6	0.0000000	0.0000000	0.0000000	0.0031480	0.0037775	0.0069255	1.1337	1.0893	0.9496	111
0.19 to 0.20 g	1174	13431	0	0		45	54	99 (0.0000000	0.0000000	0.0000000	0.0033505	0.0040205	0.0073710	1.1761	1.1314	0.9851	111
0.20 to 0.21 g	1352	12257	0	0		45	54	99 4	9000000	0.000000	0.0000000	0.0936714	0.0044056	0.0080770	1.2109	1.1631	1.0105	111
0.21 to 0.22 g	312	10905		0		45	54	99 6	9000000	0.2020202	0000000.0	0.0041265	0.0049519	0.0090784	1.2373	1.1869	1.0305	111
0.22 to 0.23 g	1679	10593	0	0	10	45	54	99.4	A 8815736	0.0000000	0.0000000	0.0002481	0.0050977	0.0093458	1.2850	1.2333	1.0702	1 1 1
0.24 to 0.25 g	399	7854		0		39	50	89 4	8.0000000	0.00000000	0.0000000	8.0049656	0.0063662	0.0113318	1.3488	1.2726	1.1085	111
0.25 to 0.26 g	399	7455	0	0		39	50	89 6	0000000.6	0.0000000	0.0000000	0.0052314	0.0067069	0.0119383	1.3863	1.3088	1.1386	111
0.26 to 0.27 g	317	7056	3	0	3	39	50	89 6	0.0094637	0.0000000	0.0094637	0.0055272	0.0070862	0.0126134	1.4218	1.3423	1.1661	111
0.27 to 0.28 g	511	6739	5	0	5	36	50	86 6	1.0097847	0.0000000	0.0097847	0.0053420	0.0074195	0.0127615	1.4868	1.3769	1.2056	111
0.28 to 0.29 g	612	6228	7	0	7	31	50	81 6	0.0114379	0.0000000	0.0114379	0.0049775	0.0080283	0.0130058	1.5629	1.3979	1.2425	111
0.29 to 0.30 g	932	5616	8	0	0	24	50	74 4	5.0000000	0.0000000	0.0000000	0.0042735	8.0089831	0.0131766	1.6737	1.4128	1.2888	111
0.30 to 0.31 g	1055	4084			17	24	50	74 1	0000000	0.0000000	0.0000000	0.0051238	0.0100/45	0.015/985	1.0004	1.3936	1.2038	111
0.32 to 0.32 g	834	2746		35	38	17	40	57 1	0.0079275	0.0113230	8.8455635	0.0000134	0.0137779	0.0203913	1.6899	1.3729	1.2518	111
0.33 to 0.34 g	397	1912	7		7	14	5	19 4	8.8176322	0.0000000	0.0176322	0.0073222	8.8826151	0.0099372	1.6773	2,1878	1.5588	111
0.34 to 0.35 g	626	1515	1	1	2	7	5	12 (8.0015974	0.0015974	0.0031949	0.0846205	0.0033003	0.0079208	1.9158	2.0657	1.6931	111
0.35 to 0.35 g	174	889	3	0	3	6	4	10 4	1.0172414	6.0000000	0.0172414	0.0067492	0.0044994	0.0112486	1.8097	1.9837	1.5998	111
0.36 to 0.37 g	13	715	0	8	0	3	4	7 6	0000000.1	0.0000000	0.0000000	0.0041958	0.0055944	0.0097902	2.0730	1.9429	1.7019	1 1 1
0.37 to 0.38 g	248	702	0	9	ø	3	4	7 4	1.0000000	0.0000000	0.0000000	0.0042735	0.0056980	0.0099715	2.1200	1.9867	1.7397	111
0.38 to 0.39 g	24	454		3	3	3		7 4	0000000	0.1250000	0.1258088	8.8866879	0.0058105	0.0154185	1.9696	1.8400	1.5999	111
0.39 to 0.40 g	2	430					1			0.0000000	0.0000000	0.0003767	0.0023255	0.0093023	1.9958	2.5454	1.8633	111
0.41 to 0.42 g	62	375	9			1	1		0.0000000	0.0000000	0.0000000	0.0071259	0.0023/53	0.0095012	2.0357	2.5941	1.8885	111
0.42 to 0.43 g	1	313	0			1	1	4 4	6.000000	0.0000000	0.0000000	0.0095847	0.0011949	0.0127796	1.9884	2.5571	1.8588	111
0.43 to 0.44 g	1	312	0	0		3	1	4.4	6066999.6	0.0000000	0.0000000	0.0096154	0.0032051	0.0128205	2.0331	2.6146	1.8923	111
0.44 to 0.45 g		311	0	0		3	1	4 6	6060008.0	0.0000000	0.0000000	0.0096463	0.0032154	0.0128617	2.0776	2.6721	1.9337	1 1 1
0.45 to 0.46 g	0	311	0	0		3	1	4.4	9050000.1	0.0000000	0.0000000	0.0096463	0.0032154	0.0128617	2.1238	2.7315	1.9766	111
0.46 to 0.47 g	5	311	0	0	0	3	1	4 6	6060000.0	0.0000000	0.0000000	0.0096463	0.0032154	0.0128617	2.1699	2.7908	2.0196	111
0.47 to 0.48 g	2	306		e		3	1	4 1	1.0000000	0.0000000	0.0000000	0.0098839	0.0032680	0.0130719	2.2871	2.8395	2.8537	111
0.48 to 0.49 g	15	384				3	1		0000000	0.0000000	0.0000000	0.0098684	0.0032895	0.01315/9	2.2495	2.8942	2.0928	111
0.49 to 0.50 g	105	291					1			0.0000000	0.0000000	0.0105055	0.0034304	0.0137457	2,2071	2.9225	2.1334	111
0.51 to 0.52 g	7	176				i	1	4 4	0.0000000	0.0000000	0.0000000	8.8178455	0.0056818	0.0227273	2.0768	2.7205	1.9281	111
0.52 to 0.53 g	3	169	0	0		3	1	4 4	0.000000	0.0000000	0.0000000	0.0177515	0.0059172	0.0236686	2.0922	2.7455	1.9369	111
0.53 to 0.54 g	2	165	e	0	0	3	1	4 1	0.0000000.0	0.0000000	0.0000000	0.0180723	8.0060241	0.0248964	2.1218	2.7847	1.9642	111
0.54 to 0.55 g	31	164	0	0		3	1	4 4	9090909.6	0.0000000	0.0000000	0.0182927	0.0060976	0.0243902	2.1548	2.8275	1.9942	111
0.55 to 0.56 g	52	133	0	1	1	3	1	4 4	9.000000	0.0192308	0.0192308	0.0225564	0.0075188	0.0300752	2.0725	2.7449	1.9129	111

52

VOLTAGE	Ext	OTAL osed	TO	TAL	PGA.	PGA	P Cut0	GA ff c	PGA	PGA			
CLASS	10.6	001g	Dan/F	unc	MAX	MAX-5	ha	sD	hasF	hasFD			
	nu	mber	nut	ber	8	8		8	8	8			
500 kV		3312			0.33	0.32	θ.	33	0.33	0.33			
230 kV		9788		0	0.42	0.35	0.	42	0.42	0.42			
115 kV	- 3	4390		1	9.38	0,35	φ.	38	0.04	0.04			
69 kV		9173		0	0.85	0.39	e.	85	0.85	0.85			
LOW V		468		6	0.25	0.25	θ.	25	0.25	0.25			
SUMMARY fo	e TYF	E= CB		PGA	PGA	PGA	PGA	PGA	PGA	PGA	PGA	PG	A PGA
				Max	Max-5	Max	Max-5	Max	Max-5	Max	Max-5	Max	Max-5
				6133 B	9.32 g	0.42 g	9.33 g	0.38 g	9.35 g	0.85 g	60 M	0.45 g	0.45 g
				200.04	Running	230 64	Running	112 114	Running	0.2 4.4	Running		Running
MA Bin Lo	N PO	A Bin I	ligh	Count	Count	Count	Count	Count	Count	Count	Count	Count	Count
									*******	*******			
0.000	NO to	0.0001	8	16449	19761	46957	56745	69848	83430	42038	51211	1502	1970
0.000	1 to	0.01	8	2370	3312	6181	9788	8442	14398	\$744	9173	243	468
0.0	to to	0.02	8	543	942	1658	3687	2610	5948	1461	3429	64	225
0.0	2 to	0.03	8	78	399	483	1957	648	3338	555	1968	32	161
0.0	M to	0.04	8	135	321	310	1354	567	2598	379	1413	15	129
8.6	is to	8.85	2	3	120	282	1857	396	1644	163	867	22	92
0.0	to to	0.07	2	45	117	192	775	234	1248	184	784	4	78
0.0	17 to	0.08	ê.	27	72	78	583	142	1014	103	688	20	66
0.0	18 to	0.09	8	3	45	50	505	47	872	50	497	18	46
0.0	19 to	0.10	8	9	42	82	455	189	825	51	447	2	28
0.1	@ to	0.11	g	0	33	40	373	64	716	53	396		26
0.1	1 to	0.12	g	0	33	49	333	46	652	-44	343		26
0.1	2 to	0.13	8	21	33	31	284	69	686	28	299		26
0.1	3 10	0.14	8		12	33	253	89	237	33	271		22
0.1	5 to	0.16	8		12	14	227	70	152	12	217		22
0.1	16 to	0.17	2	0	12	5	213	15	282	21	205		22
0.1	7 to	0.18	8		12	7	208	12	267	17	184	2	22
0.1	8 to	0.19	8	θ	12	20	201	5	255	11	167		20
0.1	9 to	0.20	8	0	12	18	181	12	258	11	156	2	20
0.2	to to	0.21	8	9	12	4	163	29	238	6	145		18
0.2	1 to	0.22	8	0	12	0	159	12	209	6	139		18
0.2	12 to	0.23	8	8	12	44	159	5	197		133		18
0.2	a to	0.24	8	0	12	47	115	29	192	10	124		18
0.2	5 to.	8.26	5		12		68	28	168	4	187		6
0.2	to to	0.27			12		68	8	148	11	183		
0.2	7 to	0.28	8	0	12	0	68	4	132	7	92		0
0.2	8 to	0.29	8	0	12	7	68	4	128	26	85		
0.2	9 to	0.30	8	9	12	9	61	37	124	12	59		0
0.3	e to	0.31	8	0	12	2	52	14	87	7	47	9	0
0.3	1 10	0.32	8	9	12	4	50	10	73		40		
0.3	13 10	0.33	8	3	3	33	46	42	0.5		48		
0.3	4 to	0.34	8			8	10	18	19		25		
0.3	5 to	0.36					2		1		17		
0.3	16 to	0.37	8		0	0	2		1			0	
0.3	7 to	0.38	8	0		0	2	1	1	2			0
0.3	8 to	0.39	8	θ	0	0	2	0		2	6		
0.3	9 to	0.48	8	θ	8	0	2	8	0		4		0
0.4	e to	0.41	8	0		0	2	0		2	4		0
0.4	1 to	0.42	8	0		2	2				2		0
0.4	13 10	0.43	8			0			0		2		0
0.4	4 10	0.44	8	0							-		
0.4	is to	0.45	8								2		
0.4	16 to	0.47				0			0		2		
0.4	7 to	0.48	8	0		0		0			2		
	s to	0.49	8	0	e	0			0		2		0

Œ

Figure 5-1 shows a photo and SERA database record for FagilityID = 111.

8

Substation

Equipment Abbreviation	EQ		Voits (k)	ige /)	0	~	
Equipment Description	Desk	top or	other	con	puter	monitors	(unanchored

Photo 1 Photo 2 Photo 3 Photo 1_LR Photo 2_LR Photo 3_LR

IIIII III NFMO	DDE 1	Slack Freque	ncy Hz
FIELD RATINGS	Rating Non-Transformer	Fragility Comments	
Bushing High	Surge Arrestor High		
Bushing Low	Surge Arrestor Low	jl	
T	ransformer Weight pound	ds PGE Book Number	
Self Supports nchor Description	nd Radiator Weight pours	ds BPA Book Number	
		SDGE Book Number	

Fragility, D PGA Fragility, F PGA PGA D No. F No. Items Damaged and Bin Damaged and Exposed Running (g) Functional non-(g) (g) Count Functional [1] [2] (3) [4] [5] [6] 0.00 5276 3 0 0.01 1081 3 0 0.06 0.04 0.02 509 0.10 3 0 0.08 0.03 392 0.15 3 0 0.12 0.04 293 1 0 0.18 0.16 0.05 183 0.20 3 0 0.20 0.06 143 3 0 0.23 0.24 0.24 0.07 106 3 0 0.28 0.27 0.08 102 3 0 0.32 0.09 0.30 93 0 0.36 3 0.10 89 0 0.33 3 0.40 0.11 86 0 0.36 3 0.44 0.12 79 0.38 0 0.48 3 0.13 77 0 0.41 0.52 3 0.14 39 3 0 0.36 0.56 0.15 39 0.38 3 0 0.60 0.16 29 0 0.37 0.64 3 0.17 29 0.39 0.68 3 0 0.18 29 0 0.41 0.72 3 0.19 29 3 0 0.43 0.76 0.20 29 3 0 0.46 0.80 0.21 29 0 0.48 0.84 3 0.22 27 0 0.49 0.88 3 0.23 27 3 0 0.51 0.92 0.24 25 0 0.52 3 0.96 0.25 24 0 0.53 1.00 3 24 0.55 0.26 3 0 1.04 0.27 0.52 19 3 0 1.05 0.28 19 3 0 0.54 1.09 0.29 0.64 18 2 0 1.10 0.30 0.62 15 2 0 1.05 0.31 0.54 10 2 0 0.93 0.32 8 2 0 0.50 0.83 0.33 0.44 6 0 0.73 2 0.34 6 2 0 0.45 0.75 0.35 0.54 0.61 4 0 1 0.36 0 0.02 0.36 1 1 0.39 Fragility Average 0.63 Weighted 0.45 0.7 Max 0.64

Figure 5-1. Desk Top Monitor Unanchored, Fragility Model 111

Item	Value	Comment
FragilityID	4	The SERA FragilityID Number
Туре	DS	Disconnect Switch
Voltage	230	kV
Item Count	20736	Total items
Count > 0.0001g	3663	Number of Items exposed to PGA > 0.0001g
Count > 0.05g	537	Number of Items exposed to PGA > 0.05g
Count > 0.10g	219	Number of Items exposed to PGA > 0.10g
Count > 0.20g	42	Number of Items exposed to PGA > 0.20g
Max PGA g	0.32g	Highest PGA level any item was exposed to
Max-5 PGA g	0.32g	Highest PGA level at least 5 items were exposed to
Count Damage	0	Number of items damaged and remained functional
Count FuncDam	0	Number of items damaged and not functional
Count F or D	0	Number of items damaged and either func. or non- func.
PGA Cutoff hasD, g	0.32g	Highest PGA level below which there was no damage
PGA Cutoff hasF, g	0.32g	Highest PGA level below which there was no func. damage
PGA Cutoff hasFD, g	0.32g	Highest PGA level below which there was no damage: f or non f
Fragility D, g	0.85g	Weighted fragility based on damage but functional
Fragility F, g	0.85g	Weighted fragility based on damage non-functional
Fragility FD, g	0.85g	Weighted fragility based on damage, functional or non-functional
Description		Post Insulator, Double Height, Braced Frame

IEEE 693 vs Reality

- IEEE 693 is geared to qualify equipment for PGA = 0.50g, with "margin"
- Margin is good. Otherwise, we get regular widespread failures
- A few failures in a single earthquake (earthquake sequence) is "acceptable".

Fragility Based on Test Data

Туре	Voltage Class KV	Median PGA, g	Beta	Slack Frequency Hz
DS	500	1.01	0.43	3.0
SA	500	4.44	0.29	1.6
DS	500	0.95	0.43	2.7
CB	500	2.43	0.30	8.3
DS	500	1.49	0.38	4.3
CB	500	3.33	0.28	11.5
CB	500	3.33	0.28	7.8
CB	115	2.35	0.31	14.2
CB	230	2.71	0.31	6.3
CB	115	1.21	0.27	6.8
CB	115	1.70	0.30	6.8
CB	230	1.47	0.31	11.1
DS	230	1.29	0.29	5.0
CB	115	0.79	0.34	14.2
DS	500	1.21	0.29	2.6
CB	500	1.96	0.38	0.6
DS	230	1.91	0.29	The second s
CS	115	1.46	0.29	
CS	115	1.29	0.29	
CS	230	1.90	0.29	
CS	60	1.72	0.29	
CS	115	1.82	0.29	
DS	500	1.14	0.29	4.8
СВ	230	1.08	0.31	3.9
CB	230	1.29	0.31	6.8
CB	115	1.25	0.34	10.3
D5	500	1.97	0.29	2.9
DS	500			4.0
CB	500	1.25	0.27	
DS	230	0.43	0.35	7.5
DS	230	2.27	0.29	5.7
DS	230	6.09	1.04	7.0
DS	230	1.82	0.29	4.1
CB	230	2.96	0.31	3.4
DS	500	1.16	0.27	2.6
SA	500	6.02	0.29	1.6
CB	115	1.68	0.31	7.3
СВ	60	2.53	0.31	19.5
CB	115	1.65	0.31	2.3
CB	115	1.02	0.31	14.2

Туре	Voltage Class KV	Median PGA, g	Beta	Slack Frequency Hz
CB	230	2.71	0.31	3.1
CB	230	1.96	0.37	5.5
SA	230	6.83	0.30	3.1
CB	115	0.88	0.31	6.6
DS	500	1.38	0.29	2.5
SA	500	1.17	0.29	2.0
CB	115	1.37	0.31	7.7
CB	500	1.71	0.28	6.0
DS	115	3.99	0.35	8.3
СВ	34	1.05	0.34	5.3
DS	115	4.59	0.35	8.4
DS	500	1.78	0.29	3.5
DS	115	8.07	0.35	10.3
CB	500	1.81	0.35	0.5
DS	500	2.97	0.29	4.3
CB	60	1.41	0.31	7.4
CB	115	1.61	0.31	7.3
CB	230	2.75	0.31	4.3
DS	500	1.84	0.29	3.4
CB	60	1.55	0.34	8.0
DS	500	2.97	0.29	4.3
SA	230	2.95	0.29	3.9
DS	230	1.50	0.29	8.0
CS	500	1.49	0.29	2.7
DS	230			
DS	500	0.92	0.42	6.3
DS	500	1.08	0.29	2.5
DS	500	0.94	0.29	1.8
DS	500	0.95	0.29	1.8
PH	115	0.55	0.29	
PH	230	0.28	0.29	
C8	230	3.03	0.31	3.3
CB	60	1.14	0.34	21.9

Modern, mostly post IEEE 693

Component	34 kV	60 kV	115 kV	230 kV	500 kV
CB	1.05	1.66	1.41	2.22	2.26
CS		1.72	1.52	1.90	1.49
DS			5.55	2.19	1.49
PH pre-IEEE 693			0.55	0.28	
SA				4.89	3.88

Average PGA Fragility levels (Medians)

The Elephant in the Room

Fragility of Overhead Feeders

This reflects 25 years of data collection!

Œ

Some data from Ridgecrest 2019

- July 4. M 6.4. 49 incidents. 19,501 customers lose power. CM = 16.1 Million
- July 5. M 7.1. 87 incidents. 17,808 customers lose power. CM = 19.4 Million
- In comparison. Winter storm: 200 Million CM (1+ times per year). High wind event: 500 Million CM (1 time per century). M 7 Earthquake: 1 Billion CM. M 8 Earthquake: 5 Billion CM (?)
- What's acceptable in California?
 - 40 Million to 100 Million CM: customers generally satisfied.
 - 500 MillionCM: some customers angry.
 - 5 Billion: politics takes over, anything can happen.

Date	Time	Crew Size	Crews Needed	Duration Hrs	Man hours	Damage Summary
07/19/2019	13:25:00	4	1	4	16	Wire Stripped to Steel Core
07/06/2019	8:58:00	4	1	8	32	Cross-Arm
07/04/2019	18:31:00	4	1	4	16	Cross-Arm
07/22/2019	10:23:00	4	1	4	16	Cross-Arm
07/06/2019	5:12:00	4	1	8	32	Cross-Arm
07/06/2019	4:09:00	4	1	4	16	Cross-Arm
07/06/2019	12:17:00	4	1	10	40	Transformer / Fire
07/06/2019	2:12:00	4	1	8	32	Leaning Pole / Replaced Pole
07/06/2019	6:13:00	4	1	16	64	Broken Tap
07/07/2019	17:09:00	4	1	6	24	Birdcage / Flashover / Broken
07/05/2019	13:30:00	1	1	1	1	Pri. Wire Down
07/06/2019	1:30:00	4	1	8	32	Pri. Wire Down
07/06/2019	23:50:00	4	1	4	16	Replace Street Light Pole
07/07/2019	20:01:00	5	1	1	5	Transformer
07/10/2019	7:08:00	4	1	8	32	UG Sec. Damaged
07/07/2019	21:52:00	4	1	6	24	Transformer
07/05/2019	15:36:00	4	1	8	32	UG Sec. Damaged
07/08/2019	11:33:00	4	1	8	32	Broken Insulator / Flashover
07/30/2019	12:25:00	1	1	4	4	Equipment Twisted / Repaired
07/08/2019	12:25:00	4	1	4	16	Sec. Wire Down
07/06/2019	19:10:00	4	4	5	80	Leaning Pole / Repair Pole
07/04/2019	14:45:00	1	1	1	1	Pri. Wire Down/ Cross-Arm
07/05/2019	15:14:00	5	1	8	40	Pri. Wire Down

Remote area. Might be EQ-related

3 Transformer Frames: High W, Low Frequency, High Wire "snapping" forces, High Torsion = high displacement demand on drop wires

Why: high curvature. What causes the high curvature: cable galloping dynamics

Why: high conductor forces. If copper wires, wires can break. If ASCR wires (aluminum with steel core), the conductor is so strong, the insulator breaks. Or, sometimes the cross arm breaks.

Root cause: no seismic design to determine forces in wires and limit forces to allowable

Street Lights

Replaced

Not Replaced

Located < 100 meters away

Inertial loading. Why? ShakeMap shows PGA 0.28g constant for both these poles. Most likley, this was not the case, and PGA (spectra) was >> 0.28g. (or, did local Dogs weaken these poles?). Corrosion is KING

Wire Down

Wire Test Data

Copper Wires: Break forces around 1,200 pounds. Non-ductile, Strain at failure ~ 2% Aluminum wires: Non-ductile if using electrical-grade aluminum

Cross Arms

Older Transformers hooked onto Cross Arms Not many of these left....

Wrapped Wires

Secondary neutral wrapped around an energized phase leading to burn down.

Cable / Pole Snapping Forces

Trends

- Rate of failures much higher if poles are in liquefied zones
- Drop span poles (lots of sag to produce zero forces under normal conditions) have much higher rates of repairs
- Phase-to-phase causes momentary outages (commonly a few seconds), or opens a breaker (recloser) requiring inspection before re-energizing, or opens a fuse or causes an entanglement / burn down, requiring repair.
- Fragility: PGA, PGV, SA(T=3.0 seconds).

Summary

- SERA ShakeMap. These tools can predict power outages. All you need is inventory, fragility, hazards.
- Substations. The problem is largely "solved". Some utilities implement. Others are waiting for that 66 million year event
- 475, 975, 2475 years "code-probabilistic". These are actually 3, 4, 7 years "reality" for a large geographic area.
- \$300 Billion will reduce power outages by 90%. Maybe SERA - ShakeMap tools can do this "smarter"

Thank you

