Seismic Performance of Water Pipelines in the August 24 2014 Napa Earthquake

John Eidinger eidinger@geEngineeringSystems.com

JWWA-WRF-CTWWA Workshop, Sendai, October 2015

The City of Napa.

M 6.0 Earthquake on West Side of Town

Population 77,000 people

337 Miles (540 km) of Water Pipes, 164 Repairs.

~ Same Length of Gas Pipes, 0 Repairs. (but some replacement of gas pipes that crossed the fault after the earthquake)

Why?

Length of Pipe in Napa Water System (2012, feet)

AMERICAN CANYON

294

294

AMERICAN CANYON

Length of Pipe in Napa Water System (2012, feet)

 \bigstar

Location 1. Hilltop Drive

Residential Construction 1950s Vintage

Road Entirely Resurfaced After September 2014 Pipe Repair Post October 2014

8330

Location 2. Mannering Street

Residential Construction 1950s Vintage

Road Entirely Resurfaced After September 2014 Pipe Repairs Post October 2014 SEP72

Location 4. Mannering Street

Unreinforced concrete driveway Cracks due to differential settlements Water table confirmed, <5 feet (Tree in planter box is about to be moved)

Location 5. Cypress Street

Looking West. Road entirely re-surfaced

Looking East. Road entirely re-surfaced Bruce Maison Standing over Recent Pipe Repar

Location 9. Hilltop at DeVita Street

101

HILLTOP

DR

AP -

Location 10. West Side Reservoir

S.

	20-30 cm/sec	30-40 cm/sec	40-50 cm/sec	50-60 cm/sec	60-70 cm/sec	70-80 cm/sec	80-90 cm/sec	Total
AC					2	2	3	7
CI	3		2	16	38	41	IO	IIO
DI				2	4	4	7	17
PVC					2			2
STL					I	I		2
UNK	3	I	2	I	9	7	2	25
Total	7	Ι	4	19	56	55	22	164

Pipe Repairs versus level of PGV, (Through Sept 15)

PGV

	Very Low	Low	Low- Moderate	Moderate	None	Total
AC			Ι	5	Ι	7
CI	Ο	II	28	48	23	IIO
DI	2	Ι	4	6	4	17
PVC	I				I	2
STL				I	I	2
UNK	I	Ι	Ι	3	19	25
Total	5	13	34	63	49	164

But, some of the pipes in the yellow (moderate) boxes in fact had fairly widespread liquefaction. Field work showed: widespread soil movements (typically 1 inch or so) and very high surface water table in soils deposited in a drainage area. This area was incorrectly mapped in USGS with a low ground water table (>10 feet), but infact has a ground water table < 5 feet from the surface.

Pipe	Length,	Repairs	Repairs due	Repairs due	Total Repairs,
Type	System-	due to	to	to Surface	August 24 to
	wide (miles)	Shaking	Liquefaction	Faulting	Sept 15 2014
		(PGV)	(PGD)	(PGD)	
AC	34.34	2	0	5	7
CI	149.34	86	19	5	110
DI	115.23	8	4	5	17
PVC	5.85	2	0	0	2
STL	30.38	2	0	0	2
RCCP	1.88	0	0	0	0
UNK		22	0	3	25
Total	337.01	122	23	18	163

RR = k1 * 0.00187 * PGV (shaking)

RR = k2 * 1.06 * PGD^0.319 (liquefaction, landslide)

RR = Repair Rate per 1,000 feet (highest of two calculations) PGV = Peak Ground Velocity (inches per second) PGD = Permanent Ground Deformation (inches) Updated (2015) Models

RR = k1 * k2 * k3 * 0.00187 * PGV (shaking)

 $RR = k1 * k2 * k3 * 1.06 * PGD^{0.319}$ (liquefaction, landslide)

RR = Repair Rate per 1,000 feet (highest of two calculations) PGV = Peak Ground Velocity (inches per second) PGD = Permanent Ground Deformation (inches)

Comparison, Updated (2015) and ALA (2001) Models

	ALA 2001			
Pipe Type	k1	k2	k3	k1
	corrosion	diameter	material	ALA 2001
AC	1.0	1.0	0.3	0.5
CI assume Rho = 1000	, age = 1930 2.5	1.0	1.0	1.0
DI assume Rho = 2000	, age = 1940 1.5	1.0	0.3	0.5
PVC	1.0	1.0	0.3	0.5
STL	1.0	1.0	0.7	0.7
RCCP	1.0	1.0	0.2	0.2

Metal Pipes. Rho < 1500 ohm-cm. Age < 1920. k1 = 3.0. Post 1960. k1 = 1.0. 1920-1960 interpolate Metal Pipes. Rho 1500 to 2500 ohm-cm. Age < 1920. k1 = 2.0. Post 1960. k1 = 1.0. 1920-1960 interpolate Metal Pipes. Rho > 2500 ohm-cm. k1 = 1.0

Pipe Type k1		k2	k3	k1
	corrosion	Diameter (≤ 12	material	ALA 2001
		inches)		
AC	1.0	1.0	0.8	0.8
CI	1.0 (0.8)	1.0	1.0	1.0
DI	1.0 (0.8)	1.0	0.5	0.5
PVC	1.0	1.0	0.8	0.8
STL	1.0 (0.8)	1.0	0.7	0.7
RCCP	1.0	1.0	0.7	0.7

Metal Pipes. Rho < 1500 ohm-cm. k1 = 1.0

Metal Pipes. Rho > 1500 ohm-cm. k1 = 0.8

All pipe types on this page have push-on / cemented joints, unrestrained.

CI, DI pipes have no special corrosion protection.

No pipes use GENEX or similar.

PGD

Breakdown of pipe damage in Napa Earthquake due to Shaking (no liquefaction, no surface faulting)

Pipe Type	Length,	Actual	Forecast
	System-wide	Repairs due to	Repairs due to
	(miles)	Shaking	Shaking
AC	34.34	2	2.4
CI	149.34	86	88.5
DI	115.23	8	12.3
PVC	5.85	2	0.4
STL	30.38	2	5.0
RCCP	1.88	0	0.1
UNK		22	
Total	337.01	122	108.8

With Updated Seismic Models

Breakdown of pipe damage in Napa Earthquake due to Liquefaction

Pipe Type	Length,	Actual	Forecast	
	System-wide	Repairs due to	Repairs due to	
	(miles)	Liquefaction	Liquefaction	
AC	34.34			
CI	149.34	19	21.2	
DI	115.23	4	4.3	
PVC	5.85			
STL	30.38			
RCCP	1.88			
UNK		0		
Total	337.01	23	25.5	

With Updated Seismic Models

Pipe Fragility Models -Lessons Learned from Napa

- The updated (2015) pipe fragility models provide very good forecasts of the pipe damage.
 - Napa has VERY corrosive soils. This explains some of the high failure rates seen in August 2014.
 - Napa did have Liquefaction. This explains some of the high failure rates.
 - Damage of water pipes due to surface faulting (<15 cm) was modest.

Pipe Fragility Models -Lessons Learned from Napa

- Gas pipelines had ZERO pipe failures in this earthquake. Water pipes had 164 failures.
- Gas pipelines used either heavy wall welded steel pipes (transmission) or MDPE pipes (distribution).
- ZERO Pipe failures (gas) versus 164 pipe failures (water), for pipes exposed to the same PGV and PGD.
- Aggressive soils (Rho < 1,500 ohm-cm) explains a LOT of the cast iron and ductile iron (without special corrosion protection) water pipe failures.

