Power Outages in the Dec 20 2022 Ferndale Earthquake

John Eidinger, G\&E Engineering Systems Inc.
January 3I 2024

Power Outages

- 70,000 customers immediately lose power
- Represents 100% of community that was exposed to PGA $=0.02 \mathrm{~g}$ to $0.60 \mathrm{~g}+$
- <5,000 customers lost power due to something physically breaking (wire down, etc.) (35 instances)
- $>65,000$ customers lost power due to phase-to ${ }^{-}$ phase or phase-to-ground faults

Phase to Phase / Ground

 Faults- Shaking causes towers / poles to vibrate, which in turn cause conductors to oscillate
- Nearly all circuits have 3 phases
- If wires swing out-of-sync and get too close to neighboring phase, the line "faults", a circuit breaker opens, and there is a power outage
- Statistical evaluations show that about I / iooo spans (between two poles or towers) had phases that faulted. Faults occurred at PGA>0.4g, and PGA< 0.05 g

Test S18. IEEE 693 Qualification Spectra (3D) Bluebird Conductor. Large slack (T-line). Tight Slack (Substation).

Test S18. Bluebird Conductor. Large slack (T-line). Tight Slack (Substation).

Test S18. Bluebird Conductor. Large slack (T-line). Tight Slack (Substation).

Conclusions

- 95% of power outages in M 6.4 Fortuna / Ferndale Earthquake were due to faults in the transmisson network
- Forecasting the phase-to-phase movement of power cables requires modest to high shaking coupled with out-of-sync conductor movements (about 2 to 3 sigma events). About I in $\mathrm{I}, \mathrm{O} 00$ spans fault. This is RARE, but there are many thousands of exposed spans. 6 faults out of $7,000+$ spans.
- To eliminate 95% of outages requires mitigation of the overhead conductors. We need long period ground time histories that account for basin effects and spatial time delay; plus structural models.

