Seismic Fragility Formulations for Water Systems Web Site Report Prepared by: G&E Engineering Systems Inc. 6315 Swainland Road Oakland, CA 94611 (510) 595-9453 (510) 595-9454 (fax) eidinger @earthlink.net Principal Investigator: John Eidinger, S.E. G&E Report 47.01.01, Revision 1 July 12, 2001 # **Acknowledgments** This report was written and reviewed by a team representing practicing engineers, academics and water utility personnel. The following people (with their affiliations) contributed to this report. John M. Eidinger (Principal Investigator) Ernesto A. Avila Don Ballantyne Luke Cheng Armen der Kiureghian Bruce F. Maison Thomas D. O'Rourke Maurice Power G&E Engineering Systems Inc. Contra Costa Water District EQE International Inc. San Francisco Utilities Engineering Bureau University of California at Berkeley East Bay Municipal Utility District Cornell University Geomatrix Consultants Inc. # **Table of Contents** | ACKNOWLEDGMENTS | i | |---|----| | TABLE OF CONTENTS | ;; | | TABLE OF CONTENTS | | | 1.0 INTRODUCTION | 1 | | 1.1 Background | 1 | | 1.2 Project Objective | | | 1.3 Project Scope | | | 1.4 Uncertainty and Randomness | | | 1.5 OUTLINE OF THIS REPORT | | | 1.6 TERMINOLOGY USED IN THIS REPORT | 4 | | 1.7 Abbreviations | 7 | | 1.8 Units | 8 | | 1.9 References | 8 | | 2.0 INVENTORY | 9 | | 2.1 Study Area | 9 | | 2.2 AQUEDUCTS | 9 | | 2.3 DISTRIBUTION PIPELINES. | 11 | | 2.4 Storage Tanks | 12 | | 2.5 Tunnels | | | 2.6 Canals | | | 2.7 VALVES AND SCADA SYSTEM COMPONENTS | | | 2.8 References | 17 | | 3.0 EARTHQUAKE HAZARDS | 18 | | 3.1 Background | 18 | | 3.2 CHOOSING THE EARTHQUAKE HAZARD | 18 | | 3.3 GROUND SHAKING HAZARD | 18 | | 3.4 LIQUEFACTION AND LATERAL SPREAD HAZARD | 19 | | 3.5 Landslide Hazard | | | 3.6 FAULT OFFSET HAZARD | | | 3.7 References | 22 | | 4.0 BURIED PIPELINE FRAGILITY FORMULATIONS | 24 | | 4.1 FACTORS THAT CAUSE DAMAGE TO BURIED PIPES | 24 | | 4.1.1 Ground Shaking | 24 | | 4.1.2 Landslides | | | 4.1.3 Liquefaction | | | 4.1.4 Settlement | | | 4.1.5 Fault Crossings | | | 4.1.6 Continuous Pipelines | | | 4.1.7 Segmented Pipelines | | | 4.1.8 Appurtenances and Branches | | | 4.1.9 Age and Corrosion. | | | 4.2 GENERAL FORM OF PIPELINE FRAGILITY CURVES | | | 4.3 BACKBONE PIPELINE FRAGILITY CURVES | 21 | | | | | 4.3.2 PGD Damage Algorithms | 32 | |--|----| | 4.3.3 Recommended Pipe Vulnerability Functions | 33 | | 4.4 PIPE DAMAGE ALGORITHMS – CONSIDERATIONS FOR ANALYSIS | 34 | | 4.4.1 Fragility Curve Modification Factors | 34 | | 4.4.2 Cast Iron Pipe Fragility Curve | 35 | | 4.4.3 Asbestos Cement Pipe | 36 | | 4.4.4 Welded Steel Pipe | | | 4.4.5 Compare Cast Iron, Asbestos Cement and Ductile Iron Pipe | 37 | | 4.4.6 Other Pipe Materials | | | 4.4.7 Effect of Pipeline Diameter | | | 4.5 FAULT CROSSING PIPE DAMAGE ALGORITHMS | | | 4.6 Other Considerations | | | 4.6.1 Single Pipeline Failure Algorithm | | | 4.6.2 Variability in Results | | | 4.7 References | | | 5.0 WATER TANK FRAGILITY FORMULATIONS | | | 5.1 FACTORS THAT CAUSE DAMAGE TO WATER TANKS | 46 | | 5.1.1 Shell Buckling Mode | | | 5.1.2 Roof and Miscellaneous Steel Damage | | | 5.1.3 Anchorage Failure | | | 5.1.4 Tank Support System Failure | | | 5.1.5 Foundation Failure | | | 5.1.6 Hydrodynamic Pressure Failure | | | 5.1.7 Connecting Pipe Failure | | | 5.1.8 Manhole Failure | | | 5.2 Empirical Tank Dataset. | | | 5.2.1 Effect of Fill Level | | | 5.2.2 Effect of Anchorage | | | 5.2.3 Effect of Permanent Ground Deformations | | | 5.3 ANALYTICAL FRAGILITY CURVES | | | 5.4 REPRESENTATIVE FRAGILITY CURVES | | | 5.4.1 Use of Fault Trees for Overall Tank Evaluation | | | 5.5 REFERENCES | | | | | | 6.0 WATER TUNNEL FRAGILITY FORMULATIONS | | | 6.1 FACTORS THAT CAUSE DAMAGE TO TUNNELS | | | 6.2 EMPIRICAL TUNNEL DATASET | | | 6.3 TUNNEL FRAGILITY CURVES | | | 6.4 References | 72 | | 7.0 WATER CANAL FRAGILITY FORMULATIONS | 73 | | 7.1 FACTORS THAT CAUSE DAMAGE TO CANALS | 73 | | 7.2 VULNERABILITY ASSESSMENT OF CANALS | | | 7.3 REFERENCES | | | 8.0 IN LINE COMPONENTS | | | | | | 8.1 PIPELINE VALVES | | | 8.2 SCADA EQUIPMENT | | | 0.3 CANAL GATE STRUCTURES | | ### List of Figures - 1-1. Idealized Vulnerability Relationship for Water System Pipelines - 1-2. Idealized Vulnerability Relationship for Water System Components - 3-1. Seismic Hazard Curve - 4-1. Bin Median Values (Wave Propagation) - 4-2. Vulnerability Functions (Wave Propagation) 4-3. Median, 84th and 16th Percentile Functions (Wave Propagation) - 4-4. Comparison of Vulnerability Functions (PGV) - 4-5. Bin Median Values (Permanent Ground Deformation) - 4-6. Vulnerability Functions (Permanent Ground Deformation) - 4-7. Vulnerability Functions (Permanent Ground Deformation) Expanded Scale - 4-8. Median, 84th and 16th Percentile Functions (Permanent Ground Deformation) - 4-9. Comparison of Vulnerability Functions (PGD) - 4-10. Pipe Damage By Material Regression Using Data Up to PGV=35 Inch/Sec - 5-1. Example Fault Trees for Evaluation of An Anchored Steel Tank - 7-1. Typical Canal Cross Sections #### List of Tables - 4-1. Reported Statistics for Main Pipe and Service Lateral Repairs - 4-2. Earthquakes and Data Points in Screened PGV Database - 4-3. Earthquakes and Number of Points in PGD Database - 4-4. Buried Pipe Vulnerability Functions - 4-5. Ground Shaking Constants for Fragility Curve (after Eidinger) - 4-6. Permanent Ground Deformation Constants for Fragility Curve (after Eidinger) - 4-7. Pipe Repairs, 1995 Kobe Earthquake, By Diameter, All Pipe Materials - 4-8. Pipe Repairs, 1995 Kobe Earthquake, By Diameter, CI and DI Pipe - 5-1. Earthquake Characteristics for Tank Database - 5-2. Complete Tank Database - 5-3. Fragility Curves, Tanks, As a Function of Fill Level - 5-4. Tank Database, Fill ≥ 50% - 5-5. Anchored Tank Database, Fill ≥ 50% - 5-6. Unanchored Tank Database, Fill ≥ 50% - 5-7. Fragility Curves, Tanks, As a Function of Fill Level and Anchorage - 5-8. Fragility Curves. Unanchored Redwood Tank. 50,000 to 500,000 gallons - 5-9. Fragility Curves. Unanchored Concrete Tank. > 1,000,000 gallons - 5-10. Fragility Curves. Unanchored Steel Tank. 100,000 to 2,000,000 gallons - 5-11. Fragility Curves. Unanchored Steel Tank, Wood Roof. 100,000 to 2,000,000 gallons - 5-12. Fragility Curves. Anchored Steel Tank. 100,000 to 2,000,000 gallons - 5-13. Fragility Curves. Unanchored Steel Tank. >2,000,000 gallons - 5-14. Fragility Curves. Anchored Steel Tank, Wood Roof. >2,000,000 gallons - 5-15. Fragility Curves. Anchored Concrete Tank. 50,000 to 1,000,000 gallons - 5-16. Fragility Curves. Elevated Steel Tank, Non Seismic Design. - 5-17. Fragility Curves. Elevated Steel Tank, Nominal Seismic Design. - 5-18. Fragility Curves. Open Cut Reservoir Roof - 6-1. Summary of Earthquakes and Lining / Support Systems of the Bored Tunnels in the Database in Table C-2 [after Power et al, 1998] - 6-2. Statistics for All Bored Tunnels in Table C-2 - 6-3. Fragility Curves, Tunnels, As a Function of Liner System - 6-4. Comparison of Bored Tunnel Fragility Curves - 6-5. Tunnel Fragility Median PGAs Ground Shaking Hazard Only - 6-6. Comparison of Tunnel Fragility Curves (Good Quality Construction) - 6-7. Comparison of Tunnel Fragility Curves (Poor Quality Construction Conditions) #### Appendices - A. Commentary Pipelines - B. Commentary Tanks - C. Commentary Tunnels - D. Commentary Canals - E. Basic Statistical Models - F. Example - G. Bayesian Estimation of the Mean Rate of Pipe Damage ### 1.0 Introduction This report provides fragilities of certain types of components of water transmission systems. Water transmission systems transport water from a source (wells, lake, reservoir) to the delivery point within a distribution system (e.g., storage tank). These fragilities can be incorporated into software programs to perform earthquake loss estimates. It is up to the end user to decide if these fragilities are suitable for the end user's applications and purposes; G&E assumes no responsibility for any use of the information in this report. ### 1.1 Background A fundamental requirement for assessing the seismic performance of a water utility is the ability to quantify the potential for component damage as a function of the level of seismic hazards. The term vulnerability relationship is used to refer to a general deterministic, statistical, or probabilistic relationship between the component's damage state, functionality, economic losses, etc., given some measure of the intensity of the earthquake hazard. The relationship between the probability of component damage and the level of seismic hazard is referred to as a fragility relationship, or fragility curve. The relationship between economic losses associated with damage and the level of seismic hazard is normally referred to as a loss relationship, or loss algorithm. The use of vulnerability relationship in this report is limited to relationships expressing the likelihood of experiencing a particular damage state. Estimating damage using vulnerability relationships is improved when the relationships accurately capture conditions and characteristics of the particular system components. There is considerable project experience with implementing such refinements within industry, consulting, and academic communities, although there are no specific procedures or guidelines for such refinements. A consequence of this lack of guidance is the inability to directly compare the potential earthquake damage for water transmission systems among a diverse population of system owners and users. The lack of uniformity in risk assessment impedes the prioritization of what activities should be taken to reduce damage and where resources should be focused to improve earthquake performance. # 1.2 Project Objective The goal of this project is to develop detailed procedures that can be applied to any water transmission system to evaluate the probability of damage to
the various components of the system from earthquake hazards. The products of this project include the fragility curves for each type of component; and a series of appendices which provide the data used in the analyses, comparisons of the fragility curves with those prepared by other researchers in the past, examples of application of the methods, and description of the statistical analysis methods used in developing the fragility curves. The fragility curves presented in this report are formed in a transparent way. By "transparent", it is meant that the way the fragility curves are developed are documented with all raw data, to allow for revision that reflects new information that may become available in the future. # 1.3 Project Scope The following components of a generic water transmission system are considered: - Water conveyance systems (pipelines, tunnels and canals) - Above ground cylindrical storage tanks - Portions of the conveyance control and data acquisition (SCADA) system that are located along the conveyance system. - Flow control mechanisms (e.g. valves and gates) The following components are excluded from the scope: - Pumping plants - Treatment plants - Diversion structures - Central control facilities - Buried or in-ground reservoirs - Dams - Hydroelectric plants - Buildings - Transportation and utility systems that support the operation of the water transmission systems (e.g., roads, bridges, outside electrical power, outside telecommunications, etc.) For each component, this report presents the likely damage states and the corresponding fragility functions. It is beyond the scope of this report to describe how to calculate earthquake hazards. A brief summary of the topic is presented in Chapter 3 in order to establish the hazard parameters needed to use the fragility functions presented in this report. The fragility curves presented in this report consider both uncertainty and randomness. Uncertainty and randomness stem from both the characterization of the earthquake hazard as well as the performance of the component itself to a particular level of hazard. Two generic examples of the expected type of product from the scope of work are illustrated in Figures 1-1 and 1-2. An approach commonly used for conveyance systems is to define a baseline vulnerability relationship and modify this relationship to account for the specific configuration of the system as illustrated in Figure 1-1. In Figure 1-1, the "component" is a segment of the conveyance system with constant properties (e.g., material, size, joint type, etc.) and uniform hazard exposure. The length of the segment may vary from tens to thousands of meters. The hypothetical form of the vulnerability function in Figure 1-1 does not provide a probability of failure for a particular segment. However, defining the error associated with estimating the damage measure allows the likelihood of the occurrence of damage to be computed. Using Figure 1-1, assuming that the damage measure is a break in a unit length of a conveyance component causing loss of conveyance, a hazard measure of 5 corresponds to a mean of 0.6 breaks/length and the mean plus one standard deviation is 1.0 breaks/length. If one knows the underlying probability distribution, the mean and standard deviation permit the probability of experiencing a specific number of breaks in the segment to be estimated. For aboveground cylindrical storage tanks, vulnerability relationships can have a more analytical basis, since basic parameters such as tank height, diameter, wall thickness, fluid level, and anchorage capacity can be used to estimate tank stresses and displacements. These response parameters can be related to the probability of experiencing a particular tank damage state (e.g., buckling, excessive uplift, roof damage) as a function of earthquake ground motion. The results can be expressed as illustrated in the hypothetical relationship plotted in Figure 1-2. There can be considerable uncertainty in quantifying vulnerability relationships. The procedures developed in this report provide the baseline or median vulnerability expressions as well as the process and basis for quantifying the uncertainty associated with the relationships. ### 1.4 Uncertainty and Randomness The fragility formulations for water system components provide explicit consideration of uncertainty and randomness. A portion of the total uncertainty and randomness stems from the underlying earthquake hazard; and a portion stems from the specific water system component. There are at least two ways of tracking the uncertainty and randomness in these evaluations: - Method 1. Track the dispersion parameters for both the earthquake hazard and the component. Combine these two into a total estimate of dispersion. Carry this total dispersion value through the analysis. - This approach is convenient in that the complexity of the analysis is simplified into just a few terms (medians and betas, for example) of a component. The HAZUS computer code [FEMA, 1999] follows this approach. - A drawback of this approach is that it is not flexible enough to deal with distributed systems (like water systems) which are composed of links and nodes. The form of the dispersion for each components (either a component of a link or a component of a node) may differ. Fault tree logic that might be used to assess whether a specific link or node is in various possible damage states might make it inappropriate to combine dispersions of individual components in a simple mathematic way (like SRSS). - Method 2. Track the dispersion parameters for both the earthquake hazard and the component. Evaluate each component separately, using a Monte Carlo simulation technique. For each simulation, combine the results for each component into a global performance for a link or a node; and then combined the performance of all the links and nodes using a suitable system model to establish how well the overall system performs. Finally, repeat this analysis for many simulations, and track the range in overall system performance. - This approach is convenient in that it can handle any form of dispersion model for specific components, and track the entire system analysis tracking for individual dispersions of individual components and localized ground hazards. - A drawback of this approach is that it requires more computation effort than Method 1. It is not the intent of this report to tell the end user which approach is better – Method 1 or Method 2. Unless specifically noted, this report provides dispersion parameter information that can be used in Method 1. If the end user wishes to de-aggregate the total dispersion into that only associated with the component, then the dispersion associated with the hazard must be removed. This is usually done by applying a SRSS rule, which is explained in detailed in Appendix E. While this combination method is not always rigorous, it may be suitable for the application being considered by the end user. Since all the raw data used to establish the fragility functions is presented in this report, the end user can always reanalyze the empirical data to establish fragility curves suited to a specific hazard, like high magnitude subduction zone earthquakes (usually longer duration than for earthquakes in California), eastern United States earthquakes (usually larger uncertainty in ground motions than for earthquakes in California). ### 1.5 Outline of this Report In order to perform loss estimates of water systems, one generally needs three types of information: - Inventory information. Chapter 2 describes the issues involved. - Seismic hazard information. Chapter 3 describes the issues involved. - Fragility models. Chapters 4 through 8 describe the fragility models. The raw data for the fragility models is presented in Appendices A (pipes), B (tanks), C (tunnels) and D (canals). Appendices A through D also provide commentary and comparisons of the fragility models to those in the literature. Appendix E presents some basic mathematical models that are used in this report, covering liner regression and the normal and lognormal distributions. Appendix F presents an example application of pipeline fragility models for a water transmission system exposed to ground shaking, liquefaction and landslide hazards. Appendix G presents an alternate method to compute fragility curves using Bayesian analysis instead of standard regression methods. # 1.6 Terminology Used in This Report Although this report is not meant to be a primer on water systems, there are certain terms that are used in the water system methodology which need to be defined. These definitions are but a means to an end - the removal of a barrier to an accurate exchange of thought and expression. <u>Conduit</u>. A free-flowing conduit can be an open channel or ditch, or may be a tunnel flowing partially full. A pressurized conduit can be a pipeline or tunnel flowing under internal pressure. An open channel can be a canal or a flume. <u>Canal</u>. A canal is a free-flowing conduit, usually open to the atmosphere, and usually at grade. A canal may be lined or unlined. <u>Damage Algorithm</u>. Same as fragility curve. <u>Distribution Storage Reservoir</u>. Most water systems include various types of storage reservoirs in their distribution systems. Storage reservoirs can be either tanks or open cut reservoirs. Fragilities developed in this report cover at-grade and elevated steel, concrete and redwood storage tanks. <u>Distribution System</u>. A water distribution system is defined at the system which delivers treated water to customers for end use. Most water distribution systems in the United States deliver treated water both for drinking, sanitary, irrigation, commercial, industrial and fire flow purposes. In some cities, separate distribution systems are built that deliver reclaimed water for irrigation or industrial purposes, and other systems for the sole purpose of
providing water to fire hydrants. The fragility formulations in this report can be used for these additional water systems. These water systems comprise a very small percentage of all distribution systems. <u>Fragility Curve</u>. A fragility curve is a mathematical expression that related the probability of reaching (or exceeding) a particular damage state, given a particular level of earthquake hazard. <u>Flume</u>. A flume is a free-flowing conduit, usually open to the atmosphere, and usually elevated. A flume is usually built from wood or metal, with wood or metal supports. The seismic performance of flumes is not covered in this report. <u>Hazard</u>. A description of the earthquake hazard. This might be ground shaking, response spectra, peak ground velocity, peak ground acceleration, permanent ground deformation. Open Cut Reservoir. Many water systems store water in open cut reservoirs. "Open cut" simply means that the reservoir is built by creating a reservoir in the natural lie of the land, often with one side of the reservoir made up of an earthen embankment dam. Many open cut reservoirs are enclosed by adding a roof, so that treated water inside is protected from contamination from outside sources. A few open cut reservoirs in treated water systems are open to the air, meaning that the water in the reservoir usually needs some type of treatment before it is finally delivered to the customer. This report does not provide fragility formulations for this type of reservoir; such fragilities would have to consider the performance of earthen embankment dams, roof structures and sometimes inlet-outlet towers. <u>Pumping Plant</u>. A pumping plant is a facility whose purposes is to boost water pressure. Pumping plants are used in both transmission and distribution systems. It is usually composed of a building, one or more pumps, electrical equipment, and in some cases, backup power systems. This report does not provide fragility curves for pumping plants or pumping plant components. <u>Raw Water</u>. Raw water is water as it is found in nature. This water may be in lakes and rivers, or in below ground aquifers. Generally, raw water is not used for drinking water purposes, as it does not conform to water quality requirements set by various Federal and State agencies. <u>Tanks</u>. A tank is a vessel which holds water. Water tanks are usually built of steel, concrete or wood (most often redwood). Some tanks are elevated (held up on columns). Some tanks rest are built "at-grade", meaning they rest directly on the ground or foundation on the ground. Some tanks are buried. Also, in some smaller parts of distribution systems, water can be stored in pressure tanks, which are usually small horizontal pressure vessels on supports, at grade. This report provides fragility curves for most kinds of tanks. <u>Transmission System</u>. A water transmission system is defined, for purposes of this report, as system which stores "raw" water, and delivers it to water treatment plants. A water transmission system is usually made up of a series of canals, tunnels, elevated aqueducts, buried pipelines, pumping plants and reservoirs. <u>Treated Water</u>. Treated water is water that has been processed to meet water quality requirements set by various Federal and State agencies. Under normal conditions, water flowing out of taps in residences is treated water. If treated water becomes contaminated due to damage to the water system during an earthquake, it is usual for water agencies to issue "boil water" alerts to its customers. <u>Treatment System Facilities</u>. Treatment facilities come in three varieties. Large centralized water treatment plants are common to most cities in the United States, when the raw water source is from lakes or rivers. Small local treatment facilities at well sites are also common when the raw water source is a below ground aquifer. In some cities, treated water is stored in open-air reservoirs, which usually requires some limited amount of secondary treatment before being delivered to customers. This report does not provide fragility curves for treatment plants. Vulnerability Function. Same as fragility curve. <u>Wells</u>. Wells are used in many cities as a primary or supplementary source of water supply. Wells include a shaft from the surface down to the aquifer, a pump to bring the water up to the surface, equipment used to treat the water, and a sometimes a building which encloses the well and equipment. This report does not provide fragility curves for wells. ### 1.7 Abbreviations Abbreviations used in this report are listed below. AC Asbestos Cement ANSI American National Standards Institute ASCE American Society of Civil Engineers CI Cast Iron C.O.V. Coefficient of Variation cm/s centimeter per second DI Ductile Iron EBMUD East Bay Municipal Utility District EPA Environmental Protection Agency FEMA Federal Emergency Management Agency fps feet per second G&E G&E Engineering Systems Inc.GIS Geographical Information System HDPE High Density Polyethylene LADWP Los Angeles Department of Water and Power ln natural logarithm Magnitude (moment magnitude unless otherwise noted) mm Millimeter MMI Modified Mercalli Intensity PGA Peak Ground Acceleration (g) PGD Permanent Ground Deformation (or Displacement) (inches) PGV Peak Ground Velocity (inches / sec) PLC Programmable Logic Controller PVC Polyvinyl Chloride RR Repair Rate (Repairs per 1,000 feet or Repairs per km. $RR = \lambda$.) RS Response Spectra RTU Remote Terminal Unit SCADA Supervisory Control and Data Acquisition SRSS Square Root of the Sum of the Squares TCLEE Technical Council on Lifeline Earthquake Engineering USGS United States Geological Survey WTP Water Treatment Plant ### 1.8 Units This report makes use of both common English and SI units. Most water pipelines in the United States are sized by diameter using inches as the unit of measure. For example, distribution pipes are commonly 6 inch or 8 inch diameter. As these are nominal diameters, the actual measured diameter might vary, depending on lining and coating systems, pipe manufacturer and material. A conversion of a 6 inch diameter pipe to a 152.4 mm diameter pipe implies an accuracy that does not exist; a conversion of a 6 inch diameter pipe to be called a 150 mm diameter pipe implies that the pipe was purchased in a metric system, which in most cases it was not (at least in the United States). Thus, English units are used where conversion to SI units would introduce inaccuracies. ### 1.9 References FEMA, 1999, HAZUS 99, Earthquake Loss Estimation Methodology, developed by the Federal Emergency Management Agency with the National Institute of Building Sciences. DM=f(D, t, d, J, M, S, E, XX) DM = damage measure D = diameter t = wall thickness d = depth of soil cover J = joint type M = material S = site characteristics E = earthquake hazard measure XX= other parameters to be determined PD = f(H, D, t, M, F, A, E, S, YY) PD = probability of damage state occurring H = height D = diameter t = wall thickness M = material F = fluid A = anchorage E = earthquake hazard measure S = site characteristics YY= other parameters to be determined Figure 1-1. Idealized Vulnerability Relationship for Water System Pipelines Figure 1-2. Idealized Vulnerability Relationship for Water System Components # 2.0 Inventory To perform a loss estimate of a water transmission system, the analyst must begin with an inventory of the components and the seismic hazards that might affect the system. It is the experience of the authors of this report that while the collection of inventory data might seem trite, it is a key step in performing the analysis. If only a rough description of the inventory or hazards is collected, then only a rough estimate of how the water system will perform in an earthquake will be possible. Depending on the objective of the loss estimation effort, the analyst may or may not have access to all the detailed inventory information that might be desired for a particular analysis. This poses some challenge as to how to assemble fragility models for water system components. For example, the material of construction of the pipelines might not be known with certainty unless original pipeline drawings are collected; since pipeline performance is likely to be a function of the material of construction, the analyst might assume "average" quality construction, and choose a fragility curve that is representative of average quality pipeline materials. The uncertainty in the results of the analysis will increase, but perhaps this might be satisfactory if the analyst is trying to do a rough "first cut" type of evaluation. To perform a loss estimate for a water system, one first has to collect inventory information about the water transmission system components. The following sections describe what input is usually required. ### 2.1 Study Area The study area is the area where the loss estimation study is being performed. The study area could represent a city, a county, a group of counties, or even multiple states, as appropriate. In some water systems, key parts of the system are located some distance away from the immediate area of concern in the loss estimation process. Therefore, the user must consider how big to make the study when performing the loss estimation, such that all vital parts of the water system are included. Usually, the study area should be set to be an area that will encompass all areas with ground shaking projected to be 0.05 g or higher. A Geographical Information system (GIS) may be a convenient way to illustrate the results from a loss estimation. # 2.2 Aqueducts Raw water is delivered to water treatment plants in large water conveyance facilities, commonly called aqueducts. An aqueduct may actually be made up of one or more of the following: • Elevated Pipes. These are commonly large diameter (diameters from 4 to 7 feet are not uncommon) pipes supported on bents. Elevated pipes
are often used in areas that traverse poor soils, and the bents are often supported on piles which extend down to competent materials. Elevated pipe is usually made of riveted or welded steel pipe. Riveted pipes were common for those pipes built prior to 1940. Above ground welded steel pipe is often made of either water-grade (poorer quality) or oilgrade (better quality) material. Pile supports can be either wood, concrete or concrete-encased steel. - Buried Pipes. These are commonly large diameter pipes buried 3 to 15 feet (sometimes deeper) into the ground. Materials are often concrete pipe with steel cylinder or steel. Steel is either riveted or welded, most often using water grade materials. - Canals. Canals can either be formed by cutting a ditch into the ground, or by building up levees, or a combination of the two. Most often, canals are concrete lined, in order to reduce water losses. Canals can traverse both stable and unstable geologic conditions. Unstable geologic conditions include liquefaction zones, landslide zones and fault crossing zones. - Tunnels. Tunnels can be classified as one of four types: rock tunnels, tunnels through alluvium with good quality liners, tunnels through alluvium with average quality liners, and cut and cover tunnels. Tunnel liners can be damaged by strong ground shaking or fault offset. Tunnel portals can be damaged from landslide. It is conceivable, although not common, for a cut-and-cover tunnel to traverse soils prone to liquefaction. - Flumes. Flumes are open channel sections that carry water in elevated structures. The channel sections are commonly wood or metal. The support systems can be wood, concrete or steel. The support structures might be a few feet high where the flume runs along a contour, or may be very tall, where the flume crosses a creek or river crossing. Flumes are specialized structures and are not specifically addressed by this report. For purposes of loss estimation, the following attributes may be needed for each aqueduct: - Location starting and ending points. End and interior points along the length of the aqueduct within the study area are needed to describe location. If the aqueduct crosses through geologically unstable areas (liquefaction zones, landslide zones), then specific x-y pairs are needed at the start and end of that area. - Type. The aqueduct should be described as being either elevated, buried, canal or tunnel. If elevated or buried, the pipe materials of construction should be established. If a canal, whether the canal is a open cut and concrete lined, or open cut and compacted earth-lined, or a built-up structure using levees. If a tunnel, then whether the tunnel is lined or unlined; and the type of liner. - Multiple Aqueducts. Each parallel pipeline / canal / tunnel should be considered, if the aqueduct is composed of multiple lines. For example, a 7.5 degree USGS topographical map may indicate a single line for an aqueduct, but a more detailed water agency map may show that there are actually multiple parallel pipelines. - Appurtenances along the length of the aqueduct include various turnouts, gates, valves, etc. These are often ignored for a simplified earthquake loss estimate, but may be important if there are particular vulnerabilities with these components, or if a system model which includes connectivity is to be used. - Some aqueducts are gravity systems, and some are pumped systems. Gravity system aqueducts deliver flow from higher elevations to lower elevations, and hence do not need any pumping to move the water. Pumped system aqueducts require pumps along the length of the aqueduct to keep the water moving. Some gravity aqueducts may include pumps along their length, where the pumps are - occasionally used to increase flow along the length of the aqueduct, but are not required for minimum flow rate operations. - If an aqueduct requires pumping, and the pumping plant is located in the study area, then the pumping plant should be located and evaluated. Seismic evaluation of pumping stations are not addressed in this report. ### 2.3 Distribution Pipelines Distribution pipe refers to the buried pipe that carries water to customers and fire hydrants. For a detailed loss estimation study, the user will digitize into the model the actual locations of all such pipe, along with its attributes. The following information is optimally needed for the seismic evaluation of distribution pipe: - What material is this pipe made up of? There are many different pipe materials currently in use in water systems throughout the United States. Based upon review of water systems serving the Seattle, Portland, San Diego, Los Angeles and the San Francisco Bay Areas, one cannot make a single set of inference rules that will be valid for any single water agency. For example: the water agency serving the city of San Francisco uses cast iron and ductile iron pipe; whereas the water agency serving the cities on the east side of San Francisco Bay uses welded steel, cast iron, plastic and asbestos cement pipe. The trend of use of different pipe materials is also true in the greater Seattle area: one agency uses ductile iron pipe, and another agency uses asbestos cement pipe. Even so, some trends can be made about pipe materials: - It is probably safe to say that a high percentage (75% to 90%) of all installed pipe in the United States, that was installed prior to 1945, is cast iron. - Other older vintage pipe materials (pre-1945) include riveted steel, wood, and wrought iron. If the user does not have access to actual pipe material information, it is reasonable to assume that all neighborhoods that were developed prior to 1945 uses cast iron pipe. - The most common joinery methods for cast iron pipe is the use of "bell and spigot" connections. These types of connections are also called "segmented" construction. These joints are made leak-tight using either cement, lead or rubber gasket materials. Cemented joints are common, and can be used as a default. - For pipe installed since 1945, a variety of materials have been commonly used throughout the United States. - Asbestos Cement (AC) pipe was very often used for pipe diameters up to 12 inches, from about 1945 to 1985. AC pipe is no longer used for new construction. Two types of joints are common with AC pipe: rubber gasket (more common), and cement (less common). AC pipe is segmented pipe. - Polyvinyl chloride (PVC) pipe for diameters up to 12 inches is gaining wider use at many water agencies, particularly for installations made since 1985. - Welded steel pipe has been in use since the early 1900s, particularly for larger diameter (12 inches and over) pipe. Welds made prior to the 1940s using oxyacetylene welding technique were often made with poor quality control and therefore exhibit severe welding defects compared to modern practice; good quality oxyacetylene welds can be as good as early arc welds. The quality of the welds (which can be ascertained through inspection) plays an important role in establishing the seismic ruggedness of welded steel water distribution pipe. - Ductile iron pipe has bee in use since the 1940s, for all pipe diameters. Ductile iron pipe can have either segmented or mechanically restrained joints. - Concrete cylinder pipe has been in use since the 1920s for larger diameter (often 36 inches diameter or larger) pipe. Most often, concrete cylinder pipe uses segmented joints, but some installations incorporate thin steel plate interior to the concrete welded at the joints. - Some water agencies have continued to use cast iron pipe through the early 1970s. - Other pipe materials in use include riveted steel pipe; wrought iron pipe; copper pipe (particularly for customer-side pipe from the meter to the structure). - What diameter is the pipe? The diameter of distribution pipe is important both in terms of pipe damage algorithms, as well as in post-earthquake performance of the entire water system. The nominal pipe diameters used for distribution pipe, in the United States, include: - Local distribution: some 4", and a lot of 6" and 8" pipe. Local distribution pipes are the pipes that most often provide connections to structures and fire hydrants. Generally speaking, if small diameter distribution pipe breaks, only the customers directly connected to that pipe will be out of service, once the broken pipe is valved out of the system. - Backbone pipes in distribution systems: 12", 16", 20", 24", 30", 36", 42", 48", 54" and 60". Backbone pipes are the pipes that connect up pressure zones from treatment plants to pumping plants to storage reservoirs. Generally speaking, if backbone pipes break, large numbers of customers will be out of service. - Other pipe attributes that may be developed when collecting inventory data include: leak history, encasement, corrosion protection systems, location of air valve and blow offs, etc. These attributes may yield some extra information as to the pipeline's fragility. However, it is recognized that these attributes may not be available to the analyst in all cases. # 2.4 Storage Tanks Storage tanks can be located at the start, along the length, or at the end of a water transmission system. Their function may be to hold water for operational storage, to provide surge relief volumes, to provide for detention times for disinfection, as well as other uses. To evaluate the storage tanks, the following information will usually be needed: - Seismic hazards at the tank site. This includes the type of soil (rock, firm soil, soft soil), the susceptibility of the site for landslide and liquefaction. - Construction. A field survey should usually be done to assess the tank's configuration, including the style of foundation, the presence of side-located inlet-outlet pipes (and any flexible couplings these may have); the style of roof system; the style of tank anchorage, if any; and estimated volume (height and diameter). It will usually require a drawing
review to affirm the structural properties of the tank, such as actual anchorage details (especially true for concrete tanks); hoop prestressing, wall thicknesses, and various structural details of the roof system. A review of the operating function of the tank should be done to ascertain whether the tank is normally kept full or nearly full (most common) or less than full (as with surge tanks or some other tanks). There are several types of water tanks in use today in the United States: #### Steel Tanks These tanks, when at grade, can range in size from very small (under 200,000 gallons) to quite large (14,000,000 gallons or larger). Elevated steel tanks are usually limited in capacity to about 2,000,000 gallons, although there are some elevated tanks up to 5,000,000 gallons. At grade steel tanks can be either anchored or unanchored. Elevated steel tanks always have some lateral load resistant capacity for wind or for earthquake. The walls of steel tanks are built from sheet steel in courses. A course is a level of the tank, often 8 to 10 feet tall. The number of steel sheets that comprise a course will vary based upon the outside circumference of the tank, and the length of each sheet of steel. The more common method to join these sheets of steel is to weld them together. On smaller volume tank (mostly under 200,000 gallons), it is not uncommon to use bolts to join the sheets; in a few older cases, rivets may be used. Steel tanks can have either steel roofs or wood roofs. Wood roofs are more susceptible than steel roofs to damage in earthquakes. It is possibly, although uncommon, to have steel tanks with no roofs. #### Concrete Tanks Concrete tanks can be either at grade or buried. Some of the older concrete tanks are reinforced concrete, and many are post-tensioned. Until recently (post-1980), few at-grade post-tensioned concrete tanks were designed for significant seismic forces, as the joint detail at the bottom of the walls specifically requires the walls to be able to slide relative to the foundation, in order to accommodate the post-tensioning process. #### Wood Tanks Wood tanks generally at grade, and are limited in capacity to about 400,000 gallons. Smaller tanks can be used in elevated tanks. While in common use in California, they are uncommon in other parts of the nation. Most wood tanks in California are made from Redwood, but the actual type of lumber used in construction probably has little effect on seismic capacity. Wood tanks are generally less expensive to construct than either steel or concrete tanks. Wood tanks are generally unanchored. #### Open Cut Reservoirs An open cut reservoir is a generally made by cutting into the ground. Usually there is an earthen embankment dam that completes the reservoir. - These reservoirs can range in size from a few million gallons to well over 100,000,000 gallons storage capacity. - These reservoirs may include roof structures, or not. Many treated water reservoirs had roofs installed in the 1960s and 1970s, to meet with EPA water quality regulations. These roof structures are often lightweight, supported on precast columns at regular spacing. These roofs often have large area vents, often resulting in a "stepped" roof design. Thus, these roofs often do not have a diaphragm to distribute seismic loads to end walls. ### 2.5 Tunnels Both raw water and treated water distribution systems may use tunnels. Tunnels may be particularly prone to earthquake damage if they cross faults, or if their portals are in landslide zones. To a lesser extent, some types of damage to tunnel liners can occur due to strong ground shaking. For purposes of developing fragility curves, tunnels are classified into one of two categories: bored tunnels, and cut-and-cover tunnels. Bored tunnels include tunnels with various types of liner systems (or no liners), and may have been constructed by tunnel boring machines (more modern tunnels) or by various other methods (older tunnels). Most of Section 6 deals with bored tunnels. Sub classifications of bored tunnels are made based on liner system and geologic conditions. ### 2.6 Canals Canals are sometimes used as components of an overall water transmission system. For example, the California River Aqueduct, bringing water from the Colorado River to Los Angeles, is composed of the following components (main line): tunnel (92 miles); cut-and-cover conduit (55 miles), lined canal (62.4 miles), pressure conduits (29.7 miles), and unlined canal (1 mile). The basic nomenclature and design features of canals is adopted from McKiernan [1993]. The possible impact of canal design features on earthquake performance is noted. It is useful to summarize why canals are sometimes used instead of pipelines. A canal is a structure operated at atmospheric pressure. Canals tend to be larger than pipelines operated under pressure. The advantages of using a canal rather than a pipeline include the possibility of construction with locally available materials, longer life than metal pipelines, and lower loss of hydraulic capacity with age. The disadvantages include the need to provide the ultimate flow capacity initially and the likelihood of interference with local drainage. Artificial channels for the conveyance of fluids fall into two categories: those which merely guide the fluid as it flows down a sloping surface, and those which confine and guide its movement under pressure; these are called free-flow or pressure conduits, respectively. Free-flow conduits may be simple open channels or ditches, or they may be pipes or tunnels flowing partially full. Pressure conduits (i.e. pipelines) are covered in Section 4. Tunnels can be free-flow or pressurized, and are covered in Section 5. The cross sectional shape of a free-flow conduit (canal) will usually be governed by a combination of cost and hydraulic capacity factors. A square conduit is hydraulically inefficient, and its flat sides are structurally undesirable due to excessive use of materials for a given strength. A semi-circular cross section, open at the top and flowing full, is the most hydraulically efficient section, but this shape is rarely used due to construction conditions. Given these issues, the most common shape of a canal has traditionally been trapezoidal. Cost is almost always a factor in the initial design of canals. All other factors being equal, the smaller the cross sectional area of a canal, the lower the cost. This means that designers will try to maximize the velocity of the water going through the canal. Maximum safe velocities for concrete-lined open channels carrying clear water can exceed 40 feet per second (fps), while safe velocities of 10 to 12 fps have been used in design. Thin metal flumes may be damaged by coarse sand or gravel at 6 to 8 fps. If the water carries an appreciable amount of silt in suspension, too low a velocity will cause the canal to fill up until the capacity is impaired. If canals are unlined, then excessively high velocities can lead to scour of the canal, which should be avoided. Losses of water from canals is an important factor for design. Losses are caused by leakage, absorption and evaporation. The leakage from well constructed and well maintained concrete, wood and metal conduits is relatively small. However, no conduit is completely tight, and in long lined systems, the accumulation of even small leakage may be important. Target leak rate allowances for conduits of 300 to 400 gallons per inch diameter per mile per day is not unheard of under normal operating conditions (for example, for a 120-inch diameter conduit, $120 \times 300 = 36,000$ gallons leakage per mile per day). Earth canals have traditionally been trapezoidal in form, but with modern materials and construction facilities, curved bottoms are possible. Side slopes are determined by stability of the bank materials; often based on experience. The heights and widths of banks are determined by freeboard and stability requirements. Typical unlined trapezoidal canal sections are shown in Figure 2-1. Typical design factors for canals are as follows: - The side slopes of cuts and fills not exposed to the action of water must conform to the angle of repose of the materials, with allowance for possible saturation by seepage. The steepest safe slopes are usually most economical for initial design. If earthquake-induced loading has not been factored, especially under saturated condition, then failure of these side slopes is a credible failure mode. Failure of side slopes could lead to loss of an adequate amount of freeboard, reduction of flow cross sectional area; increase in sediment transport, etc. - An adequate amount of freeboard must be provided to accommodate accumulation of sand or silt, growth of moss or other vegetation, centrifugal forces on curves, wave action, increase in flows at diversions, inflow of storm waters, etc. Slumping of freeboard is credible under earthquake loads, and if adequate freeboard does not remain after the earthquake, the canal may need to be operated at lower flow rates or shutdown for repairs. The lower limit for freeboard is usually 1 foot for small canals, to as much as 4 feet for large canals. The top of the lining, in lined canals, is not usually extended for the full height of the bank freeboard. - The width of the bank must be wide enough to provide the embankment with sufficient strength to resist internal water pressure and to prevent too free an escape of water by seepage. The top width is usually made about equal to the depth of the water with a minimum of 4 feet, or 12 feet if a road is required. Embankments exposed to considered water pressure are wider, and should be compacted. - Deep cuts may yield more materials than needed for the banks. If the excess materials (spoils) are left next to the canal, a level space, or berm, is typically provided to protect the waterway from sloughing materials from the spoils. If not properly designed, these spoil
banks could slump under earthquake loading, sending materials into the canal. - A canal may be lined. The purposes of the liner are many, including: avoid excessive loss of water by seepage; avoid piping of water through or under banks; provide stability for the banks; avoid erosion; promote the continued movement of sediments; facilitate cleaning; help control the growth of weeds and aquatic growths; reduce flow resistance; avoid waterlogging of adjacent lands; promote economy by a reduction in excavation. The Bureau of Reclamation [Bureau of Reclamation] established design guidelines for various types of canal liners. Four types are generally in use: unreinforced concrete, asphaltic concrete, reinforced concrete, and gunite. Typical thicknesses are from 1.25 inches (very low flow rates) to 4.5 inches (high flow rates). Reinforcement is rarely used for usual irrigation canals, unless needed for structural reasons. Temperature stresses in concrete or mortar linings can cause buckling of the liner, but this is usually not important, and thus expansion joints are not included except at junctions to rigid structures. Except in heavily reinforced liners, cracking cannot be avoided from normal loading; thus lightly reinforced liners can be used to control cracking. Due to cost, even light reinforcement is often omitted, and cracking is controlled by the placement of a weakened-pane-type joint, or "sidewalk" groove, formed in the concrete to a depth of about one-third of the lining thickness. High levels of ground shaking or any form of PGD could lead to excessive cracking of a liner. The potential for damage from a heavily cracked liner would depend upon the original purpose of the liner; if the only function of the liner was to control the growth of weeds, such cracks may be acceptable for an extended length of time, and the damage might be acceptable; if the function of the liner was to avoid waterlogging of sensitive adjacent lands, the damage might not be acceptable. ### 2.7 Valves and SCADA System Components <u>Valves</u>. Valves on major transmission pipelines are usually spaced out at wide intervals. Intervals between 2,500 feet to 20,000 feet are not uncommon. The location of the valves is often important when making decisions as to how a pipeline system performs as a whole, in that damage to a pipeline between two valves will need to be isolated by closing the valves. Any water customers or turnouts that are located in a damaged pipeline section will necessarily lose all water service, once these valves are closed (unless these customers have access to an alternate water supply). Obtaining the location of the valves is also important in that certain pipeline mitigation strategies may involve the addition of actuators on the valves. Actuators include motor- or hydraulic actuators. It might also be worthwhile to ascertain whether the valves are located in the ground (direct burial), or are in valve pits (reinforced concrete boxes in the ground), or are above ground. Historically, in-line valves have not shown themselves to be particularly vulnerable to earthquake damage, unless the pipeline that they are connected to is also damaged. This issue is further discussed in Section 8. <u>SCADA System Components</u>. SCADA system components in the water transmission system which are of interest in this project are as follows. - Instruments attached to the pipeline. These may include flow and pressure devices, sometimes installed in a venturi section of pipeline. These devices are usually considered rugged, with regards to earthquake motions. However, air bubbles which are introduced into the pipeline system may cause these instruments to provide false readings. - Instruments attached to a canal. These may include various types of float instruments, which are used to assess the level of water in the canal. Water sloshing can affect or damage these devices. - Remote Terminal Units (RTUs) and Programmable Logic Controllers (PLCs). RTUs and PLCs are most commonly solid state devices. An RTU device picks up the analog signals from one or more channels (often 20 to 50 channels) of SCADA system devices at one location. The RTU converts these signals into a suitable format for transmission to a central SCADA computer, often at a location remote from the devices. A PLC can control when pumps are turned on or off, based on real time data or pre-programmed logic. For most seismic loss estimates, RTUs and PLCs are considered rugged, and are not specifically included in the analysis. - Manual Recorders. Most water systems have in the past used manual recorders to track pressures, flows and gradient information. These recorders are still in use in many water systems today. The recorders sometimes report on the same information as the automated SCADA system, often using the same instruments. However, these manual recorders usually rely on commercial power, and will not work if commercial power is lost after an earthquake. Also, since the installation of automated SCADA system hardware is often relegated to just some locations in water system, it may be that the manual recorder system hardware is the only recording devices at a location. For this report, we provide no fragility information for these manual recording devices. - SCADA Cabinet and Power Supply. The SCADA cabinet is usually a metal enclosure, often bolted to a wall, but sometimes self-standing. For inventory purposes, the analyst should collect information as to how the cabinet is mounted; if it is mounted to a floor, then floor anchorage information should be collected; if mounted to a wall, then the wall should be assessed as to whether it is an unreinforced masonry wall, or a full structural wall. The SCADA cabinet should be inspected inside to see if all equipment is well anchored (the usual case). Most SCADA systems include battery backups; the location of the battery should be verified in the field; and the installation of the battery should be noted. Some SCADA systems use Uninterruptible Power Systems (UPS) systems, which allow no loss of power to the SCADA system component of offsite commercial power is lost. The anchorage of the UPS itself should be determined. - Communication Links. The remote SCADA system will be connected in some manner to the central location SCADA computer system. The most common links are: radio (common), leased landline (common); microwave (infrequent); or public switched landline (rare). The number and type of links should be inventoried for each SCADA system site. This will help assess the likelihood that the SCADA system will be able to send signals to the central location computer after the earthquake. ### 2.8 References Bureau of Reclamation, "Linings for Irrigation Canals," 1963. # 3.0 Earthquake Hazards ### 3.1 Background Chapter 3 outlines the basic descriptions of geotechnical hazards that are assumed available (or can be made available) to the seismic loss estimation effort. It is recognized that the state-of-the-practice in the estimation of geotechnical hazards is likely to improve over time. The current effort concentrates on the estimation of fragility to pipelines, tanks, canals, tunnels and in-line SCADA equipment. If alternate methods are used to establish the geotechnical hazards, then it is quite likely that the fragility models may also need to be changed. For example. As of circa 2001, it is generally beyond the state-of-the-practice to forecast ground strains from permanent ground deformations, due to landslide, lateral spreads, settlements, etc. At best, we can forecast regional areas with potential vertical and lateral movements. It is the responsibility of the analyst to establish the actual geotechnical hazards for the project at hand. ### 3.2 Choosing the Earthquake Hazard There are two generally accepted methods that can be used for evaluating the seismic performance of an existing facility: scenario earthquakes or probabilistic earthquakes. A "scenario" earthquake is defined as the occurrence of a particular magnitude earthquake at a particular location. The selection of scenario earthquakes will usually include large magnitude "maximum" or "maximum credible" earthquakes as well as smaller magnitude but more "probable" earthquakes. Scenario earthquakes are often considered in risk evaluations when the utility owner wishes to determine system-wide performance given a particular earthquake. Scenario earthquakes are useful for assessing the likely or maximum losses given that a particular earthquake occurs; evaluating emergency response plans; and in meeting pre-set performance goals. By establishing the frequency of occurrence for each scenario earthquake, and selecting a suitable suite of scenario earthquakes, a loss estimate can be established on an annual or other suitable time-line basis. A "probabilistic" earthquake is defined as the likely level of ground hazard (usually peak ground acceleration) at a particular location within a given time frame. A common way of expressing a probabilistic earthquake is by using a hazard curve. An example hazard curve is shown in Figure 3-1. As water systems are often located over a large geographic area, with varying soil types, the hazard level at different locations can vary considerably, both due to regional variations in soil conditions, as well as differences in distance to the causative faults. Probabilistic earthquakes are useful for assessing expected annualized losses; establishing insurance premiums; and for benefit cost analyses; but are not usually directly applicable to system-wide loss estimates. # 3.3 Ground Shaking Hazard Given that an earthquake occurs in or near a water system, there will be some level of ground shaking hazard at all locations. The ground shaking levels at locations near the fault will usually be higher than ground shaking at locations far from the fault, but uncertainty in ground motions and local soil conditions can sometimes
negate this trend. Ground shaking is usually characterized by peak ground acceleration (PGA), peak ground velocity (PGV), or response spectra (RS) at the site location of the component. Unless specifically mentioned in this report, the PGA, PGV or RS value is assumed to be for the horizontal component of motion. PGA or RS are usually used for above ground components. PGV is usually used for below ground pipelines. Once the source location of the earthquake in known, PGAs, RSs and PGVs can be calculated using attenuation models. Attenuation models have been developed to account for various types of earthquakes (subduction, strike slip), types of shaking (acceleration, velocity, response spectral values for varying levels of damping), type of soil (rock, firm, soft) and other special factors (near field directivity effects, vertical motions, upthrust locations). This report makes no attempt to list or reference all the types of attenuation models available. However, each attenuation model used should define the following two parameters: the average level of shaking, and a measure of the dispersion in the average. [Sadigh et al] provides several types of attenuation models. This dispersion parameter is a very important parameter to estimate. It plays an important role in estimating upper and lower bounds of potential response of various water system components. Generally speaking, this parameter can be called β_R , which is the lognormal standard deviation of the ground shaking parameter. The "R" subscript denotes that this dispersion parameter reflects randomness. For the evaluation of at grade and above ground water storage tanks, it will usually be required to estimate the response spectral shape at the site. Except where specifically mentioned in this report, it is assumed that the site specific response spectrum is provided at 5% damping and represents the smoothened median spectral shape associated with the median peak ground acceleration for the site. Different attenuation relationships should be used for soft soil sites, subduction zone earthquakes and earthquakes affecting the eastern United States. An average of multiple attenuation relationships may also be used. It is assumed that any attenuation model that is used for loss estimation will provide the following minimum information: - The median level of ground shaking expected at a specific component location, given a particular fault breaks for a particular magnitude. - An estimate of the dispersion in the median level of ground shaking hazard. The most common formulation now used for dispersion of the ground shaking hazard is to assume that the shape of the dispersion is lognormal. # 3.4 Liquefaction and Lateral Spread Hazard Liquefaction is a phenomenon that occurs in loose, saturated, granular soils when subjected to long duration, strong ground shaking. Silts and sands tend to compact and settle under such conditions. If these soils are saturated as they compact and settle, they displace pore water, which is forced upwards. This increased pore water pressure causes two effects. First, it creates a quick condition in which the bearing pressure of the soils is temporarily reduced. Second, if the generated pressures become large enough, material can actually be ejected from the ground to form characteristic sand boils on the surface. This displaced material in turn results in further settlement of the site. Lateral spreading is a phenomenon which can accompany liquefaction. On many sites, the layers of liquefiable materials are located some distance below the ground surface. If the site has significant slope, or is adjacent to an open cut, such as a depressed stream or road bed, liquefaction can cause the surficial soils to flow downslope or towards the cut. Lateral spreading can be highly disruptive of buried structures and pipelines, as well as structures supported on the site. The ideal way to evaluate the liquefaction hazard along a specific pipeline / canal right of way is to perform site specific liquefaction analyses. For some areas of the country, liquefaction susceptibility maps have already been prepared; see Power and Holzer [1996] for a detailed bibliography of available liquefaction maps. Recent "seismic hazard zone" maps prepared by the CDMG for purposes of establishing liquefaction special study zones are in general not directly suitable for loss estimation, in that the CDMG liquefaction (and landslide) zones are not defined by the level of hazard, and not verified that any hazard in fact exists [ref. http://www.consrv.ca.gov/dmg/]; while these maps could be used as a starting point in a loss estimation effort, these maps should not be used with the geotechnical models presented in this report. For initial evaluations the analyst could proceed with a simplified approach. The simplified approach may be sufficiently valid for a regional evaluation, although may not be suitable for site specific evaluations. The liquefaction analysis should provide an estimate of the probability that a specific site will liquefy, and if it does, the amount of permanent ground deformation (PGD) at that site. The PGD can be either vertical (settlement) or lateral (lateral spread) or a combination of the two. If there is a combination, the vector sum value of PGD should be used for use with pipeline fragility curves. For practical purposes, most regularly designed buried pipelines will sustain damage at lateral PGDs much over a foot; hence extreme accuracy in the lateral spread PGD parameter is not essential. Some methods to estimate the effects of liquefaction are provided in the 1997 liquefaction workshop [Youd and Idriss, 1997]. ### 3.5 Landslide Hazard Landslide hazards encompass several distinct types of hazard. These are deep seated and rotational landslides; debris flows; and avalanche / rock falls. These different types of landslides can affect water system components in different ways: - Buried pipelines, valves and vaults. Deep seated rotational and translational landslides pose a significant threat to causing damage to buried pipelines, valves and vaults. Most past efforts in estimating landslide-induced damage to water pipelines has been for deep seated landslides. Debris flows and avalanches are usually not credible threats to buried structures. - Water storage tanks. Deep seated rotational and translational landslides pose a significant threat to causing damage to at-grade storage tanks. Even a few inches of landslide-induced settlement can distort a tank enough to fail it (particularly concrete tanks). Debris flows can also damage tanks if the flow is large enough and hits the tank at high enough velocity. Avalanches and rock falls might, in some circumstances, impact sufficiently on above ground structures to cause damage. - Canals. Debris flows can be significant threats to canals, and can be activated by heavy rainfalls and/or earthquakes, particularly when the ground is saturated. - Tunnels. Landslides pose a serious threat to tunnels at the tunnel portal locations. Section 3.5 discusses hazard models for deep seated landslide movements. This document does not present models for debris flows, rock falls or avalanches. If a particular water system component appears vulnerable to these types of landslides, then a site specific hazard model should be developed. There are three basic steps in evaluating the deep seated landslide hazard: - 1. Develop a landslide susceptibility map. - 2. Estimate the chance of landslide given an earthquake. - 3. Given that a landslide occurs, estimate the amount and range of movement. Landslide Maps. This effort should be performed by geologists familiar with the geology of the area. There are many ways to develop such maps, ranging from aerial photo interpretation to field investigation to borehole evaluations. The cost to develop these maps can be substantial, especially if there are no available maps. For some areas, landslide susceptibility maps have already been prepared. For example, the USGS has issued a number of such maps [Nielson]. Recent "seismic hazard zone" maps prepared by the CDMG for purposes of establishing landslide special study zones are in general not directly suitable for loss estimation, in that the CDMG landslide (and liquefaction) zones are not defined by the level of hazard, and not verified that any hazard in fact exists [ref. http://www.consrv.ca.gov/dmg/]; while these maps could be used as a starting point in a loss estimation effort, these maps should not be used with the geotechnical models presented in this report. Site specific surveys and aerial photographs can be used for specific pipeline alignments. Earthquake-induced landsliding of a hillside slope occurs when the static plus inertia forces within the slide mass cause the factor of safety to temporarily drop below 1.0. The value of the peak ground acceleration within the slide mass required to just cause the factor of safety to drop to 1.0 is denoted as the critical or yield acceleration, a_c. This value of acceleration is determined based on pseudo-static slope stability analyses and/or empirically based on observations of slope behavior during past earthquakes. Deformations can be calculated using the approach originally developed by Newmark [1965]. The sliding mass is assumed to be a rigid block. Downslope deformations occur during the time periods when the induced PGA within the slide mass, a_{is} exceeds the critical acceleration a_c . In general, the smaller the ratio below 1.0, of a_c to a_{is} , the greater is the number and duration of times when downslope movement occurs, and thus the greater is the total amount of downslope movement. The amount of downslope movement also depends on the duration or the number of cycles of ground shaking. Since duration and number of cycles increase with earthquake magnitude, deformation tends to increase with increasing magnitude for given values of a_c to
a_{ic} . The landslide evaluation requires the characterization of the landslide susceptibility of the soil / geologic conditions of a region or subregion. Susceptibility is characterized by the geologic group, slope angle and critical acceleration. The acceleration required to initiate slope movement is a complex function of slope geology, steepness, groundwater conditions, type of landsliding and history of previous slope performance. At the present time, a generally accepted relationship or simplified methodology for estimating a_c has not been developed. A possible relationship proposed by Wilson and Keefer [1985] could be used. Because of the conservative nature such a model, an adjustment should be made to estimate the percentage of a landslide susceptibility category that is expected to be susceptible to landslide. Wieczorek and others [1985] suggest such relationships. Thus, at any given location, landsliding either occurs or does not occur within a susceptible deposit depending on whether the peak induced PGA a_{is} exceeds the critical acceleration a_{c} . For locations which do slide, the amount of PGD needs to be estimated. The uncertainty in any estimated landslide PGD is governed by the uncertainty in the local induced ground acceleration, and for other factors in the model; this could be roughly accounted for by increasing the ground motion uncertainty parameter to 0.5 or so; or by having a competent geotechnical engineer provide a site specific description of the uncertainties involved. It is beyond the scope of this document to assess this uncertainty, other than to note that this value may be important in terms of the overall water system loss estimate. ### 3.6 Fault Offset Hazard The amount of surface displacement due to surface fault rupture can be estimated using models such as those provided by [Wells and Coppersmith 1994]. When using these models, it should be recognized that most such models predict the maximum displacement anywhere along the length of the surface fault rupture. It is recognized that fault offset will vary along the length of the surface rupture, from 0 inches to the maximum amplitude. Given this variation, it is recommended that the maximum displacement from such models be varied along the length of the fault, from 0 to the maximum, with an expected value of some percentage of the maximum displacement. It should also be noted that most fault offset models provide a median estimate of the maximum displacement along the length of the fault for a given magnitude earthquake. A dispersion estimate of the amount of fault offset is usually provided with the model. #### 3.7 References Newmark, N. M., 1965, Effects of earthquakes on dams and embankments, Geotechnique, vol. 15, no. 2, pp. 139-160. Nielsen, Tor H., Preliminary Photo Interpretation Map of Landslide and Other Surficial Deposits of the Richmond 7-1/2' Quadrangle, Contra Costa and Alameda Counties, California, 1975. Power, M. S., Holzer, T. L., 1996, Liquefaction Maps, ATC Tech Brief No. 1, Applied Technology Council, Redwood City, CA. Sadigh, K., Chang, C.Y., Egan, J.A., Makdisi, F., Youngs, R.R, "Attenuation Relationships for Shallow Crustal Earthquakes Based on California Strong Motion Data", Seismological Research Letters, v. 68, No. 1, p. 180, 1997. Wells, D. L., and Coppersmith, K. J., 1994, Updated empirical relationships among magnitude, rupture length, rupture area and surface displacement, Bulletin of the Seismological Society of America. Wieczorek, G. F., Wilson, R. C., and Harp E. L., 1985, Map of slope stability during earthquakes in San Mateo county, California, U.S. Geological Survey miscellaneous investigations, Map I-1257-E, scale 1:62500. Wilson, R. C. and Keefer, D. K., 1985, Predicting areal limits of earthquake induced landsliding, evaluating earthquake hazards in the Los Angeles region, U.S. Geological Survey professional paper, Ziony, J. I., Editor, p. 317-493. Youd, T. L., and Idriss, Ed., 1997, Liquefaction workshop, NCEER. Figure 3-1. Seismic Hazard Curve # 4.0 Buried Pipeline Fragility Formulations ### 4.1 Factors That Cause Damage to Buried Pipes The following subsections describe the factors that lead to damage to buried pipe in earthquakes. ### 4.1.1 Ground Shaking Ground shaking refers to the transient soil deformations due to seismic wave propagation. It affects a wide area and can produce well dispersed damage. The level of ground shaking at a pipeline location can be measured in terms of peak horizontal ground velocity (PGV). #### 4.1.2 Landslides Landslides are the permanent deformation of soil mass which can be very damaging to buried pipe. These produce localized severe pipe damage. More landslides will occur if the earthquake occurs in the rainy winter season. Some landslides will be small and displace only a few inches. Some landslides may involve 100,000 cubic yards of soil or more, over many feet of distance, and will damage entire areas of pipelines. The amount of landslide movement is measured in terms of permanent ground displacement (PGD). ### 4.1.3 Liquefaction Liquefaction is a phenomenon that occurs in loose, saturated, granular soils when subjected to long duration, strong ground shaking. Silts and sands tend to compact and settle under such conditions. If these soils are saturated as they compact and settle, they displace pore water which is forced upwards. This upward pressure on the pore water causes two effects. First, it creates a quick condition in which the bearing pressure of the soils is temporarily reduced. Second, if the generated pressures become large enough, material can actually be ejected from the ground to form characteristic sand boils on the surface. This displaced material in turn results in further settlement of the site. Lateral spreading is a phenomenon which can accompany liquefaction - induced settlements. On many sites, the layers of liquefiable materials are located some distance below the ground surface. If the site has significant slope, or is adjacent to an open cut, such as a depressed stream or road bed, liquefaction can cause the surficial soils to flow downslope or towards the cut. Lateral spreading can be highly disruptive of buried pipelines. Seismic soil liquefaction has the potential to occur in certain soil units, and can result in permanent ground deformations. Heavy concentrations of breaks will occur in areas of liquefaction-induced lateral spreading. The orientation of the pipe relative to the ground movement can affect the amount of damage [O'Rourke and Nordberg]. The amount of liquefaction movement is measured in terms of permanent ground displacement (PGD). #### 4.1.4 Settlement Pipe breaks will occur due to relative vertical (differential) settlements at transition zones from fill to better soil, and in areas of young alluvial soils prone to localized liquefaction. Breaks can also occur where pipes enter tanks or buildings. The amount of settlement movement is measured in terms of permanent ground displacement (PGD). ### 4.1.5 Fault Crossings Localized permanent ground deformations occur in surface fault rupture areas. Damage to segmented pipes (e.g., cast iron pipe having caulked bell-and-spigot joints) will be heavy when crossing surface ruptured faults. Butt welded continuous steel pipes may sometimes be able to accommodate fault crossing displacements, up to a few feet. The amount of fault offset movement is measured in terms of permanent ground displacement (PGD). Continuous butt-welded steel pipelines are less prone to damage if they are oriented such that tensile strains result from the fault displacement. This is because tensile deformation takes advantage of the inherent ductility and strength of the steel, whereas compressive deformation promotes pipe wall wrinkling and accumulation of high local strain. The angle of the pipeline-fault crossing has a major impact on pipeline response for orientations which promote tension. For continuous ductile pipelines that cross strike slip faults, the performance will improve as the angle of the pipeline-fault intersection increases, for cases where the pipe can displace the surrounding soil consistent with the assumptions outlined by [Newmark and Hall]. For segmented pipelines subject to tension, the optimal angle of the fault crossing depends on joint characteristics. This angle depends upon taking maximum advantage of both the pullout and joint rotational capacities of the joints. Leaded joint couplings appear to be able to take only 1 to 2 inches of fault displacement before failure. Extra long restrained couplings can take up to about a foot of fault displacement [O'Rourke and Trautmann]. For both segmented and continuous pipelines, it is advantageous to avoid bends, tie-ins, and local constraints close to the fault. This allows the pipeline that crosses the fault additional length over which to distribute the imposed strains resulting from the fault offset. Burial depth is also a factor at fault crossings. The shallower the burial, the less overburden, and hence less frictional resistance by the soil on the pipe. The lower the frictional resistance, the easier the pipe will be able to deform or buckle upwards in fault crossings, without causing severe damage. For example, a pipeline with 3 foot overburden can sustain about 4 times the fault displacement as compared to a pipeline with 10 feet of overburden. Two failure modes occur when a pipeline is deformed in compression: the pipeline may buckle as a beam, or it may deform by local warping and wrinkling of its wall. Buckling can occur across fault crossings, either due to fault creep or sudden fault offset. Pipe wrinkling failure occurs in thinner walled pipes in high frictionally restraint soil conditions. #### 4.1.6 Continuous Pipelines Continuous pipelines are pipes having rigid joints, such as continuous welded steel pipelines. Continuous pipelines built in accordance with modern codes of practice have
generally performed better in past earthquakes than those constructed with other methods [Newby]. Experience has shown that some pipelines constructed before and during the early 1930s did not benefit from the same quality controls which prevail today. For example, the 1933 Long Beach earthquake caused over 50 breaks in high-pressure gas pipelines in welded joints. In every instance, the breaks in large diameter lines were discovered at welds that lacked proper penetration or bond with the body of the pipe. Poor welds have also contributed to failures of more modern (1960s vintage) welded steel pipelines using arcwelding procedures. Experience has also shown that welded pipelines with bends, elbows, and local eccentricities will concentrate deformation at these features, especially if permanent ground deformations develop compression strains. Liquefaction-induced landslides during the 1971 San Fernando earthquake caused severe damage to a 49 inch diameter water pipeline at nine bend and welded joints [O'Rourke and Tawfik, 1983]. ### 4.1.7 Segmented Pipelines A jointed pipeline consists of pipe segments that are connected by relatively flexible (or weak) connections (e.g., a bell-and-spigot cast iron piping system). They typically can fail in three ways: excessive tensile and bending deformations of the pipe barrel; excessive rotation at a joint; or pullout at a joint [Singhal]. Segmented pipe with somewhat rigid caulking such as Portland cement cannot tolerate much relative movement before leakage occurs. Pipes with flexible rubber gaskets can generally tolerate more seismic deformations. ### 4.1.8 Appurtenances and Branches Experience has shown that pipeline damage tends to concentrate at discontinuities such as pipe elbows, tees, in-line valves, reaction blocks, and service connections. Such features creates anchor points (rigid locations) that will promote force/stress concentrations. Locally high stresses can also occur at pipeline connections to adjacent structures (e.g., tanks, buildings and bridges), especially if there is insufficient flexibility to accommodate relative displacements between pipe and structure. This was reported as the reason for most of the damage to service connections of water distribution piping during the 1971 San Fernando earthquake. #### 4.1.9 Age and Corrosion Age and corrosion will accentuate damage, especially in segmented steel, threaded steel and cast iron pipes. Older pipes appear to have a higher incidence of failure than newer pipes. Pipe damage due to the 1987 Whittier Narrows earthquake (Los Angeles area) showed an increasing trend of earthquake pipe breaks vs. age of pipe [Wang]. Similar trends have been documented for the 1989 Loma Prieta earthquake for steel pipe [Eidinger 1998]. Age effects are possibly strongly correlated with corrosion effects, due to the increasing impact of corrosion over time. Corrosion weakens pipe due to the effective decrease in material thickness as well as creating stress concentrations. Screwed / threaded steel pipes appear to fail at a higher rate than other types of steel pipes. Some cast iron pipes have also experienced higher incidences of corrosion failure [Isenberg 1978, Isenberg 1979, Isenberg and Talyor]. ### 4.2 General Form of Pipeline Fragility Curves The damage algorithm for buried pipe is expressed as a repair rate per unit length of pipe, as a function of ground shaking (peak ground velocity, PGV) or ground failure (permanent ground deformation, PGD). The development of damage algorithms for buried pipe is currently (2001) primarily based upon empirical evidence, tempered with engineering judgment, and sometimes by analytical formulations. Empirical evidence means the following: after an earthquake, data is collected about how many miles of buried pipe were experienced what levels of shaking, and how many pipes were damaged (broken or leaking) due to that level of shaking. Most of the empirical evidence we have prior to 1989 is for the performance of small diameter (under 12 inches) cast iron pipe. This is because cast iron pipe was the most prevalent material in use in water systems for earthquakes that occurred some time ago (like San Francisco, 1906). More recent earthquakes (Loma Prieta 1989 and Northridge 1994) have yielded new empirical evidence for more modern pipe materials, like asbestos cement, ductile iron and welded steel pipe. Still, as of 2001, we do not have a complete empirical database for all pipe materials under all levels of shaking. Most empirical evidence documented in the literature shows pipe fragility in terms of a repair rate per unit length of pipe. In this report, we adopt this format, using the following description of fragility: repair rate per 1,000 feet of pipe. For purposes of this report, a pipe repair can either be due to a complete fracture of the pipe, a leak in the pipe, or damage to an appurtenance of the pipe. In any case, these repairs require the water agency to perform a repair in the field. The pipe repairs predicted using the fragility curves are for repairs in buried pipe owned by the water agency. This includes the pipe mains in the street, pipe laterals that branch off the main to fire hydrants, and service connections up to the meter owned by the water agency. Buried pipe from the water agency's meter up to the customer's structure may also break. This pipe is usually very small diameter (under 1 inch diameter), and is generally the responsibility of the customer for repair. If this pipe breaks, then water will leak out of the water main until someone shuts off the valve at the service connection. Losses due to pipe repairs on the customer's side of the meter are not covered in this report. ### 4.3 Backbone Pipeline Fragility Curves Appendix A.1 provides the buried pipeline empirical dataset used for the evaluations presented in Section 4. Appendices A.2 and A.3 summarize buried pipe earthquake damage statistics and damage algorithms as reported in the literature. Sections 4.3.1 and 4.3.2 compile as much of this previous historical earthquake data as possible into two pipe damage databases, one for wave propagation damage and another for ground failure damage. Statistical analyses are then performed to estimate vulnerability functions. Vulnerability functions relate overall pipe damage measures to relatively simple demand intensity descriptions. The functions are entirely empirical, based on reported damage from historical earthquakes. Damage is expressed in terms of pipe repair rate defined as the number of repairs divided by the pipe length exposed to a particular level of seismic demand. Two separate types of pipe damage causing mechanisms are considered: seismic wave passage, and earthquake induced ground failure. Wave passage effects refers to the transient vibratory soil deformations caused by seismic waves generated during an earthquake. Wave passage effects cover a wide geographic area and affects pipe in all different types of soil. Strains are induced in buried pipe because of its restraint within the soil mass. In theory for vertically propagating shear waves, peak ground strain is directly proportional to peak ground particle velocity (PGV), and therefore PGV is a natural demand description. Ground failure effects are the permanent soil movements caused by such phenomena as liquefaction, lurching, landslides, and localized tectonic uplifts. These tend to be fairly localized in geographic area and potential zones can be somewhat identified *a priori* by the specific geotechnical conditions. Ground failure can be very damaging to buried pipe because potentially large localized deformations can develop as soil masses deform and move relative to each other. Such deformations can cause fracture or pull-out of pipe segments embedded within the soil. Permanent ground displacement (PGD) is used here as the demand description. It is recognized that the PGD descriptor ignores the variation in the amount of ground displacement and the direction of ground displacement relative to the pipeline; if the analyst is interested in this kind of detail, then site-specific analytical methods should be used instead of area-wide vulnerability functions. ### 4.3.1 Wave Propagation Damage Database and Vulnerability Functions The damage considered for the vulnerability functions presented in this sections is that caused by seismic wave propagation only (no ground failure effects). The "raw data" damage statistics as reported from various sources are contained in Table A.1-1. It contains 164 data points from 18 earthquakes. Many damage statistics cited were in different formats which necessitated adjustments in order to make them more consistent. This "screened" database is contained in Table A.1-2, and the adjusted data in Table A.1-2 which is used for statistical analysis is explained below. Several aspects about repairs as reported in the damage surveys warrant discussion. The first deals with accuracy of repair records which are used as the basis of damage estimation. Detailed damage survey compilations are performed typically by a third party, some time after the water system is restored. Repair records by field crews are commonly used to ascertain damage counts. The main objective of the field crews is to restore the water system to service as rapidly as possible after the earthquake, and understandably, accurate documentation of damage is of secondary importance. Hence, there are inaccuracies in the damage estimates (omission of repair records, vague descriptions of what was damaged, multiple repairs at a single site lumped to one record, etc.). Unfortunately, this uncertainty is inherent to all damage surveys, is likely to vary significantly from earthquake-to-earthquake, and is impossible to quantify. Very often little or no differentiation of damage severity was included in the damage surveys. The damage was reported in the survey if, and only if, a repair crew actually
performed some type of pipe repair at a particular site. If a repair crew repairs a pipe one day after the earthquake, and the same location is repaired again five days after the earthquake, then it is counted as two repairs (the same pipe can be damaged after it is initially repaired once full system pressures are applied, due to continued soil movements, etc.). When the repair crew makes the repair, some type of damage report is developed by the utility. When possible, these damage reports are reviewed by engineers to decipher the cause and type of damage, but often the repair record provides no information as to sort of damage, or such scant information that engineering interpretation may be incorrect. For purposes of system-wide hydraulic analysis, it would be useful to be able to differentiate whether the repair was a "small leak" or a "major failure". A small pipe leak allows the continued system operation thus having relatively low repair priority, whereas a major failure of pipe segments requires the local system shut-down, no water can flow, and merits higher priority for repair. The interpretation of repair records leading to numbers of damaged pipes varies from earthquake-to-earthquake, and exactly what was included in the damage counts is not always clear. Repairs can be to a variety of system components including in-line elements (e.g., pipe, valves, connection hardware) and appurtenances (e.g., service laterals, hydrants, air release valves). Some surveys counted damage to in-line elements for use in repair rate calculations; other surveys included damage to utility-owned service laterals up the utility-customer meter; some surveys included damage to service laterals up the customer house. Pipe damage data which is for damage only to the main pipe is useful for ascertaining relative vulnerability of different pipe materials. However, for level of effort estimates required to restore the water system to its pre-earthquake condition (e.g., crew man-days), then all damage requiring field work ought to be included. Table 4-1 illustrates the effect of counting repairs to customer service laterals (portion of service pipe from water main to customer utility meter). The surveys shown suggest that the ratio of service lateral repairs to pipe repairs can vary widely, and the numbers of service repairs can even exceed the numbers of pipe repairs (in one of four cases reported; but note that in Japan, the length of service laterals can be quite long, whereas typical U.S. water utilities own only a few feet of service lateral up to the meter connection). If both pipes and service laterals can be repaired during the same site visit then the service damage counts may not be that important, but vice-versa if each requires a separate repair trip. It is recognized that most damage statistics for U.S. earthquakes exclude most damage to service laterals on the customer side of the meter; and that customers have often hired their own private contractors to make service line repairs, at the customer's sole expense. However, water utility staff have occasionally repaired a service line on the customer's side of the meter, and in these instances, the damage would be included in the statistics in Tables A.1-1 and A.1-2. | Earthquake | Number of
Service Lateral
Repairs | Number of
Main Pipe
Repairs | Ratio
Service:Pipe | |------------------------------|---|-----------------------------------|-----------------------| | 1995 Hyogoken-nanbu (Kobe) | | | | | (Shirozu, et al, 1996) | 11,800 | 1,760 | 6.7:1 | | 1994 Northridge ¹ | | | | | (Toprak, 1998) | 208 | $1,013^2$ | 1:4.8 | | 1989 Loma Prieta | | | | | (Eidinger, et al, 1995) | 22 | 113 | 1:5.1 | | 1971 San Fernando | | | | | (NOAA, 1973) | 557 | 856 | 1:1.5 | #### Notes - 1. Numbers of field repair records. - 2. Includes repairs to hydrants. Table 4-1. Reported Statistics for Main Pipe and Service Lateral Repairs The authors suggest that the user consider the data in Table 4-1 as follows. First, calculate the damage to the main pipes, using the vulnerability functions presented in Section 4.3.3. Second, allow for an additional 20% in terms of number of damage locations to account for damage to service laterals, up to the point of the utility / customer meter. Some type of refined analysis for very long service laterals would be required if these laterals exceed, on average, about half the width of streets. The raw data in Table A.1-1 was adjusted and screened to create a database having consistent format for analysis. The process screened out 83 data points leaving 81 points from 12 earthquakes. As shown in Table A.1-2 (and summarized in Table 4-2), most of the points are from four earthquakes: Kobe, Northridge, Loma Prieta and San Fernando. For these four earthquakes respectively, the repair counts were based on number of repairs to: • Kobe: in-line components and appurtenances • Northridge: in-line components and hydrants • Loma Prieta: in-line components and appurtenances • San Fernando: in-line components | Earthquake | Number of Data Points | Percentage | |----------------------------|-----------------------|------------| | 1995 Hyogoken-nanbu (Kobe) | 9 | 11% | | 1994 Northridge | 35 | 43% | | 1989 Loma Prieta | 13 | 16% | | 1971 San Fernando | 13 | 16% | | Other Earthquakes (8) | 11 | 14% | | Totals | 81 | 100% | Table 4-2. Earthquakes and Data Points in Screened PGV Database The most common material in the database is cast iron (38 points) followed by steel (13), asbestos cement (10), ductile iron (9), and concrete (2). Another 9 points have both cast and ductile iron pipe combined. In terms of pipe diameter, the database contains mostly those sizes associated with distribution main systems, only 8 points were identified as specifically for large diameter pipe (> 12 inch). (See Section 4.4.7 for further analysis of the database to consider pipe diameter). Demand used is peak ground velocity (PGV). However, different definitions exist for PGV, e.g., average of the peak horizontal values (from orthogonal directions at a point), geometric mean (square-root of the product of the peak horizontal values), or the peak value from either horizontal direction. Since the intended use of the pipe vulnerability functions is for the loss estimation from possible future earthquakes, it is natural to base them on the geometric mean PGV since this is the quantity typically estimated using modern attenuation relationships [e.g., Sadigh and Egan, 1998]. (The geometric mean is usually close to the average and is less than the peak of the two directions.) The Kobe and Northridge data were scaled downward to represent the geometric mean PGV values (scale factors of 0.90 and 0.83 respectively were determined by averaging numerous Kobe and Northridge instrument values). For some of the other earthquakes it was not always clear what was meant by reported PGV so that there is likely to be some inconsistencies in the database. Also, some demands were reported in terms of Modified Mercalli Intensity (MMI) or peak ground acceleration (PGA), and for these conversions were made based on Wald et al. [1999]. The variability in PGV values from these different methods is probably moot considering the scatter of repair rate when plotted against PGV as shown below. Other adjustments to the raw data include elimination of data points that were duplicates, contained permanent ground displacement (PGD) effects, or included damage from multiple earthquakes. Judgment was used in these assessments and some errors may be present in the screened database because of misinterpretation of the sometimes vague descriptions contained in the sources. Some sources provided multiple damage statistics for same earthquake, and such duplicate points were eliminated. Several earthquakes had reported repair rates much greater than the others and the source did not specifically indicate whether PGD effects were present. These were judged to include PGD effects and were eliminated. One earthquake had an aftershock of similar intensity as the main shock and the repairs for that earthquake were eliminated. Table A.1-2 contains the screened database that was used for statistical analysis. Data point adjustments are indicated in Table A.1-2 as well. The database exhibits substantial scatter in plots of repair rate versus PGV. To better discern a causal dependency, PGV ranges were assigned, and repair rates were lumped into the various "bins" according to their associated PGV values. Figure 4-1 show a bar chart of the median repair rate for each bin. There is a clear trend of larger repair rate with increasing PGV thus suggesting pipe vulnerability functions based on PGV are viable. Two different models were formulated as follows. <u>Linear (Median) Model</u>. Repair rate RR (repairs per 1000 feet of pipe), is a straight line function of PGV (inches per sec): $$RR = a \bullet PGV$$ where, a = the median slope of the data point set, and an individual data point slope is taken as the repair rate divided by its associated PGV. Coefficient a = 0.00187 for the data set having all 81 points. The line defined by this model has the property of having equal numbers of points above it and below it. It is one description of central tendency that is not sensitive to data outliers. A two parameter liner model (RR = 0.01427 + 0.001938 * PGV) has a higher slope, reflecting the influence of the high repair rate of outliers. Power Model. Repair rate is a function of PGV: $$RR = b \bullet PGV^c$$ where, b and c = coefficients set using the standard linear least squares method on log(PGV), and b = 0.00108, and c = 1.173 for the data set having all 81 points. Figure 4-2 shows that both models are about the same especially when considering the scatter in the data points. The models fit the trend of increasing repair rate according to PGV as suggested by the bin medians also shown. The data
point scatter is large, and Figure 4-3 depicts bounds on the variability in term of 84^{th} and 16^{th} percentile lines constructed so that respectively 68 and 13 of the data points fall below. Two-thirds of the points lie between the bounds. The upper bound slope of 0.00529 is 2.8 times the Median Line slope, and the lower bound slope of 0.00052 is 0.28 times, thus indicating a confidence interval for the vulnerability function. The range is relatively large having a factor of 10 between the bounds (= 2.8/0.28). If a single lognormal standard deviation were to be applied, beta would be 1.15 (i.e., $0.00052 * \exp(2\beta) = 0.00529$). Additional analyses were performed to assess the influence of pipe material, pipe diameter and earthquake magnitude. For different pipe materials, relative vulnerability was explored by computing Linear models for each material and taking the ratios of the slope coefficients (parameter a). Ductile iron and steel pipe were found to be less vulnerable than cast iron, by less than a factor of two; and asbestos cement was the best performer. These trends are not in keeping with conventional thinking which ranks brittle materials such as cast iron or asbestos cement more vulnerable than ductile materials such as steel or ductile iron by more than a factor of three [e.g., NIBS, 1997]. Moreover, statistical tests (Wilcoxon rank-sum) on pairs of material types (e.g., CI versus DI) could not accept the hypothesis (at a 5% significance level) that the individual data point slope populations differ (an exception was between CI and AC). This suggests that the deviations in the Linear Model slope coefficients from different materials could be from sampling error rather than differing statistical populations. In a similar manner, analyses were carried out to assess the effect of pipe diameter using the dataset in Table A.1-2, but with only eight data points for large diameter pipe, results did not show much difference in relative vulnerability versus either distribution pipe or small diameter pipe. Finally, duration of strong motion shaking during an earthquake could intuitively have an effect on pipe damage due to cumulative cyclic damage (more cycles of deformation leading to more damage). Earthquake magnitude is a surrogate for the duration of strong shaking, but the magnitudes of the earthquakes in the database (Table A.1-2) were mostly in the range of 6 to 7, and hence no meaningful statistical assessment of a duration effect could be made, even if it is intuitively reasonable to assume that there is such an effect. Figure 4-4 compares the Linear Model to several others: HAZUS brittle pipe [NIBS, 1997], Eguchi et al. [1983] cast iron pipe, Eidinger [1998] cast iron pipe, and Toprak [1998] cast iron pipe. The HAZUS model is that used in the FEMA U.S. national loss estimation methodology. The Eguchi model is one of the earliest which segregated wave propagation from ground failure damage (demand here was converted from MMI to PGV using Wald et al. [1999] equation). The Toprak model represents a recent model based on sophisticated GIS analysis of Northridge pipe damage (based on Northridge data but not as adjusted in screened database). The Linear Model and Toprak models agree favorably, and yield repair predictions less than either the HAZUS, Eidinger or Eguchi models. # 4.3.2 PGD Damage Algorithms The damage considered for the vulnerability functions presented in this sections is that caused by permanent ground deformations (wave propagation effects are masked within the more destructive effects of PGDs). The database contains 42 points from four earthquakes, and liquefaction ground failure is the predominate mechanism (Table 4-3). | Number of | Percentage | Ground Failure Type | |-------------|------------------------------------|--| | Data Points | | · · | | 12 | 28 % | Liquefaction vertical settlement | | 20 (note 1) | 48 % | Liquefaction lateral spread | | 5 | 12 % | Local tectonic uplift | | 5 | 12 % | Liquefaction lateral spread | | 42 | 100 % | | | | Data Points 12 20 (note 1) 5 5 | Data Points 12 28 % 20 (note 1) 48 % 5 12 % 5 12 % | Note 1. Excludes 14 data points for gas pipes which are listed in database but not used in statistical analysis. Table 4-3. Earthquakes and Number of Points in PGD Database Table A.1-3 contains the complete database. Material types include asbestos cement (20 points), cast iron (17), and cast iron and steel mixed (5). The diameters are mostly those sizes associated with distribution main systems with only 5 points specifically identified as from large diameter pipe (> 12 inch). Table A.1-3 also lists damage to gas pipes which were not used in the statistical analysis. It is of interest to note that cast iron gas pipes were reported [Hamada, et al, 1986] to have a trend of higher repair rates than the weaker asbestos cement water pipes in the Nihonkai-Chubu quake because gas leaks were detected much more accurately (implying that many water pipe leaks go undetected). Hamada et al. [1986] did not report the types of joints used in the asbestos cement or steel pipe. Statistical analysis of the database was carried out in a similar way as that described above for the wave propagation data. Figure 4-5 shows a bar chart of the median repair rates for the different data point bins. The repair rates are about two orders of magnitude greater than those for wave propagation thus indicating the extreme hazard that PGD poses for buried pipe. Even for PGDs up to 5 inches, the repair rate is about 2 repairs per 1000 feet. In the context of post-earthquake water system performance, a system-wide average of only 0.03 "breaks" per 1000 feet of pipe is assigned a serviceability of 50% using the HAZUS methodology, where 100% serviceability corresponds to the pre-earthquake condition. (HAZUS assigns 20% of wave propagation repairs as "leaks", and 80% of ground failure repairs as "breaks.") Hence, those portions of water systems that experience ground failure are likely to be mostly inoperable immediately after the earthquake. Also, the repair rates are somewhat insensitive to PGD value as an order of magnitude increase in PGD only produces a factor of roughly 2 to 3 increase in numbers of repairs. Both Linear and Power models were fitted to the data. The Linear model has coefficient, a = 0.156, and for the Power model, b = 1.06, c = 0.319. Figure 4-6 shows that the Power model is a better overall fit to the data. However, for relatively small PGDs (which are still quite damaging), it could yield some under-prediction when compared to the median of the data points in this range (see Figure 4-7). Figure 4-8 depicts bounds on the variability in term of 84th and 16th percentile curves constructed so that respectively 35 and 6 of the data points fall below, respectively. About two-thirds of the points lie between the bounds. The upper bound is 2.0 times the Power Model, and the lower is 0.45 times the Power model, thus indicating a factor of 4.4 times between the 16th and 84th percentiles. If a single lognormal standard deviation were to be applied to the Power Model, beta would be 0.74. Figure 4-9 compares the Power Model to others: HAZUS brittle pipe [NIBS, 1997], Eidinger [1998] for cast iron pipe and the Harding Lawson model for cast iron pipe [Porter et al, 1991]. The HAZUS model is that used in the FEMA U.S. national loss estimation methodology. The median Power Model yields larger repair rates higher than HAZUS, but lower than the Harding Lawson or Eidinger models. ## 4.3.3 Recommended Pipe Vulnerability Functions Table 4-4 provides the recommended "backbone" pipe vulnerability functions (damage algorithms, fragility curves) for PGV and PGD mechanisms. These functions can be used when there is no knowledge of the pipe materials, joinery, diameter, corrosion status, etc. of the pipe inventory; and when the evaluation is for a reasonably large inventory of pipelines comprising a water distribution system. | Hazard | Vulnerability
Function | Lognormal
Standard | Comment | |------------------------------------|--------------------------------|-----------------------|--| | | | Deviation, β | | | Wave Propagation | RR=0.00187 * PGV | 1.15 | Based on 81 data points of which largest percentage (38%) was for CI pipe. | | Permanent
Ground
Deformation | RR=1.06 * PGD ^{0.319} | 0.74 | Based on 42 data points of which largest percentage (48%) was for AC pipe. | #### Notes - 1. RR = repairs per 1,000 of main pipe. - 2. PGV = peak ground velocity, inches/second .PGD = permanent ground deformation, inches - 3. Ground failure mechanisms used in PGD formulation: Liquefaction (88%); local tectonic uplift (12%) Table 4-4. Buried Pipe Vulnerability Functions # 4.4 Pipe Damage Algorithms - Considerations for Analysis The user can use the damage algorithms in Table 4-4 to predict damage to buried pipes due to ground shaking, liquefaction and landslide. Table 4-4 should be used if the user has no knowledge of pipe materials, pipe joinery, pipe diameter or soil corrosivity. However, the user is cautioned that this practice is akin to using a single damage algorithm for both Unreinforced Masonry buildings and Wood Frame buildings: this could produce significantly uncertain results, and may not be suitable for loss estimation purposes. Considering these issues, we provide the user with more refined damage algorithms in the following sections. ## 4.4.1 Fragility Curve Modification Factors The fragility curves in Table 4-4 are "backbone" fragility curves, representing the average performance of all kinds of pipes in earthquakes. Throughout this report and in Appendix A, there are many discussions as to how various pipe types might behave in earthquakes. Tables 4-5 and 4-6 present our summary recommendations as
to how to apply the fragility curves in Table 4-4 to particular pipe types. By diameter, small means 4 inch to 12 inch diameter, and large means 16 inch diameter and larger. Tables 4-5 and 4-6 are for pipelines installed without seismic design specific to the local geologic conditions. To apply Tables 4-5 and 4-6, the pipe vulnerability functions in Table 4-4 are adjusted as follows: $RR = K_1(0.00187)PGV$ (for wave propagation) $RR = K_2(1.06)PGD^{0.319}$ (for permanent ground deformation) | Pipe Material | Joint Type | Soils | Diam. | \mathbf{K}_{1} | Reference | |---------------------|------------------|-----------|-------|------------------|-----------| | | | | | | Sections | | Cast iron | Cement | All | Small | 1.0 | 4.4.2 | | Cast iron | Cement | Corrosive | Small | 1.4 | 4.4.2 | | Cast iron | Cement | Non corr. | Small | 0.7 | 4.4.2 | | Cast iron | Rubber gasket | All | Small | 0.8 | 4.4.2 | | Welded steel | Lap - Arc welded | All | Small | 0.6 | 4.4.4 | | Welded steel | Lap - Arc welded | Corrosive | Small | 0.9 | 4.4.4 | | Welded steel | Lap - Arc welded | Non corr. | Small | 0.3 | 4.4.4 | | Welded steel | Lap - Arc welded | All | Large | 0.15 | 4.4.4 | | Welded steel | Rubber gasket | All | Small | 0.7 | 4.4.6 | | Welded steel | Screwed | All | Small | 1.3 | 4.4.6 | | | | | | | A.3.11 | | Welded steel | Riveted | All | Small | 1.3 | 4.4.6 | | Asbestos cement | Rubber gasket | All | Small | 0.5 | 4.4.3 | | | | | | | 4.4.5 | | Asbestos cement | Cement | All | Small | 1.0 | 4.4.3 | | Concrete w/Stl Cyl. | Lap - Arc Welded | All | Large | 0.7 | 4.4.6 | | Concrete w/Stl Cyl. | Cement | All | Large | 1.0 | 4.4.6 | | Concrete w/Stl Cyl. | Rubber Gasket | All | Large | 0.8 | 4.4.6 | | PVC | Rubber gasket | All | Small | 0.5 | 4.4.6 | | Ductile iron | Rubber gasket | All | Small | 0.5 | 4.4.5 | | | | | | | 4.4.6 | Table 4-5. Ground Shaking - Constants for Fragility Curve | Pipe Material | Joint Type | K_2 | Reference
Sections | |---------------------|---|-------|-----------------------| | Cast iron | Cement | 1.0 | 4.4.2 | | Cast iron | Rubber gasket | 0.8 | 4.4.2 | | Cast iron | Mechanical restrained | 0.7 | 4.4.2 | | Welded steel | Arc welded, lap welds (large diameter, non corrosive) | 0.15 | 4.4.4 | | Welded steel | Rubber gasket | 0.7 | 4.4.3 | | Asbestos cement | Rubber gasket | 0.8 | 4.4.3 | | Asbestos cement | Cement | 1.0 | 4.4.6 | | Concrete w/Stl Cyl. | Welded | 0.6 | 4.4.6 | | Concrete w/Stl Cyl. | Cement | 1.0 | 4.4.6 | | Concrete w/Stl Cyl. | Rubber Gasket | 0.7 | 4.4.6 | | PVC | Rubber gasket | 0.8 | 4.4.6 | | Ductile iron | Rubber gasket | 0.5 | 4.4.6 | Table 4-6. Permanent Ground Deformations - Constants for Fragility Curve ## 4.4.2 Cast Iron Pipe Fragility Curve The cast iron fragility pipe curve should include the following considerations: - If the cast iron pipe is located in soils with uncertain corrosive soil conditions, set K1 = K2 = 1.0. This reflects that the bulk of the empirical dataset is governed by cast iron pipe with either cement or lead type joints. - If the cast iron pipe is in corrosive soils, the damage rate should be higher than if the pipe is in non-corrosive soils. Unfortunately, the bulk of the empirical database does not provide us with information as to soil corrosiveness. We make the engineering judgment that a small diameter cast iron pipe in corrosive soil is about 40% more damage susceptible than the best fit curve from the empirical database, and that cast iron pipe in non-corrosive soils is about 30% less damage susceptible than the best fit curve from the empirical database. This translates to a factor of 2 difference between cast iron pipe in corrosive versus non-corrosive soils (1.4 / 0.7 = 2.0). - If the cast iron pipe uses rubber gasketed joints (occasional use by some water utilities), assume about 80% of the damage rate for ground shaking and about 80% the damage rate for ground deformation. This reflects that gasketed pipe of all types (AC, DI) have lower damage rates than cement or lead jointed cast iron pipe (more common construction in older cast iron pipe), and factors in the relative earthquake vulnerability of rubber gasketed cast iron pipe suggested in Table A.3-18. - The K1 constants in Table 4-5 can be multiplied by 0.5 for cast iron pipe with 16 inch diameter and larger. - K2 for restrained CI pipe is set about 30% lower than regular cemented joint CI pipe. There is limited length of restrained CI pipe in use, so there is no empirical data available to confirm this trend. Based on engineering judgment, the restraint offered by bolted joints should provide some extra ability of CI pipe to sustain PGD before being damaged. ## 4.4.3 Asbestos Cement Pipe The asbestos cement pipe corrections factors K1 and K2 include the following considerations: - The Loma Prieta earthquake showed that AC pipe in the epicentral area of the earthquake (with rubber gasketed joints and 8 foot to 13 foot pipe segments) had better seismic performance than would have been anticipated by using older empirical models (see Figure A-3) at least in areas subject only to ground shaking. - The empirical data for rubber gasketed asbestos cement pipe (Loma Prieta 1989, Northridge 1994) differs considerably from previously reported empirical data for asbestos cement pipe in Haicheng or Mexico City [O'Rourke and Ayala]. One explanation is that the AC pipe damage in those earthquakes used predominantly cemented joints instead of rubber gasketed joints. Cement joints limit flexibility of the pipe. This factor is considered in differentiating the damage algorithm for AC pipe into two: one for rubber gasketed pipe (better than Cast Iron pipe), and one for cemented joint pipe (similar as for Cast Iron pipe). - AC pipe in areas subject to settlements (PGDs) have had high damage rate (such as in Turkey, 1999). The K2 factors of 1.0 (cemented) or 0.8 (rubber gasketed) reflect little reduction from the backbone fragility curve for AC pipe. #### 4.4.4 Welded Steel Pipe The welded steel pipe fragility curve should include the following considerations: - If the steel pipe is in corrosive soils, the damage rate should be higher than if the pipe is in non-corrosive soils. We make the engineering judgment that a small diameter steel pipe in corrosive soil is about 50% more damage susceptible than the best fit curve from the empirical database, and that small diameter steel pipe in non-corrosive soils is about 50% less damage susceptible than the best fit curve from the empirical database. This translates to a factor of 3 difference between welded steel pipe in corrosive versus non-corrosive soils (1.5 / 0.50 = 3.0). Adjustment for corrosion should be applied only when there is no corrosion protection measures taken and the pipe is in corrosive or moist soil; corrosion measures might include a suitable coating system with sacrificial anodes. - Note that for steel pipe with corrosion protection which includes suitable coating and sacrificial anodes, or suitable coating with impressed current, the use of correction factors for corrosion may not be suitable. - Corrosion is an age related phenomenon. Relatively new (under 25 years of age) steel pipe in corrosive soil environments will not be as affected as older steel (over 50 years old) pipe in the same environment. Similarly, corrosion will not play as big a role if special corrosion protection is included in the design. For these cases, use K1 = 0.3 for small diameter welded steel pipe. - The factor of 3 increase in repair rate is representative of corroded pipe based on 1971 San Fernando, 1983 Coalinga and 1989 Loma Prieta earthquake experience. - If age is not a attribute that will be available in a limited effort loss estimation study, we recommend that an average corrosion factor of 2 be used when steel pipe is located in corrosive soils. For this case, use K1 = 0.6 for small diameter welded steel pipe. - The repair rates are decreased for steel pipe having nominal diameters greater than or equal to 12 inches. The 1989 Loma Prieta empirical evidence indicates a repair rate diameter dependency [Eidinger, 1998]. Other studies [Sato and Myurata, O'Rourke and Jeon] have also reported lower damage rates for large diameter pipes. Important factors may include: quality of construction; fewer lateral connections; and alignments possibly in better soils. Considering these factors, we have included a diameter dependency for large diameter pipes as follows: repair rates are reduced by 75%. The reduction for repair rates for large diameter pipe probably reflects a number of factors: - There are few service connections attached to large diameter pipe. - Corrosion effects on large diameter pipes (which can lead to small pin hole leaks) are not as pervasive for large diameter pipes as for small diameter pipes. - There are fewer bends and tees in large diameter pipes (stress risers). - Large diameter pipes have thicker walls to contain an equal amount of pressure, and are hence stronger. - Large diameter pipes may be installed with better care. - It is easier to weld large diameter pipes than small diameter pipes. - Soil loads, as a function of pipe strength, are lower for larger diameter pipe given the same depth of soil cover. # 4.4.5 Compare Cast Iron, Asbestos Cement and Ductile Iron Pipe The curves in Figure 4-10 represent the best fit lines through the empirical database only for small diameter cast iron, ductile iron and asbestos cement pipe for wave propagation damage from the 1994 Northridge earthquake. The following observations are made: - Ductile Iron pipe has lowest damage rates at lowest PGVs. - AC Pipe has similar damage rates as DI pipe, projected to be the lowest damage rate at PGVs over 14 inches/second. - Cast Iron pipe has the highest damage rates. Based on the complete dataset in Table A.1-2, vulnerability functions are fitted through data for specific types of pipe. The
following models are found for pipe damage due to ground shaking: - Cast Iron pipe. RR=0.00195 * PGV. Damage rates are 104% (=195/187) of the average. (RR = 0.00195 * PGV for cast iron pipe based on only CI datapoints). - Ductile Iron pipe. RR=0.00103 * PGV. Damage rates are 55% (=103/187) of the average. (RR = 0.00103 * PGV for DI pipe based on only DI datapoints). - Asbestos Cement pipe. RR=0.00075 * PGV. Damage rates are 40% (=75/187) of the average. (RR = 0.00075 * PGV for AC pipe based on only AC datapoints). ## 4.4.6 Other Pipe Materials At the current time, there is insufficient empirical evidence to describe performance for many classes of buried pipe. For example, we have not yet had an earthquake which has severely tested large quantities of PVC pipe with rubber gasketed joints. Since many water systems in fact have this type of pipe in the ground, one must make some recommendation as to how to treat the various classes of pipe. We make the following recommendations: - <u>Ductile Iron</u>. Use the cast iron damage algorithm (unknown soil conditions), but scaled by about 0.50 based on the empirical evidence in the 1994 Northridge earthquake. Note that some ductile iron pipe networks include cast iron appurtenances, making them the weak link. - Welded Steel Arc Welded X Grade. By "X" grade, it is meant welded steel pipelines installed to the general quality controls and design procedures commonly used for oil and gas pipelines. Joints are generally butt welded. Use the cast iron damage algorithm (unknown soil conditions), but scaled by 0.01 based on algorithms reported in the literature (e.g., Figure A-3). - Concrete with Steel Cylinder. These are generally large diameter pipes, typically 24" to 60" in diameter. Three typical pipe joints are used: lap welds of the internal steel cylinder; cemented joints; and carnegie (rubber gasket) joints. The thin wall of the internal steel cylinder is usually designed to take between one-third and two-thirds of the hoop tension. The limited data available for this type of pipe, coupled with the thin wall and eccentric welds of the internal cylinder, suggest a base rate curve about equal to the average of the empirical dataset. It is noted that Table A.3-18 suggests that the relative vulnerability for these kinds of pipe is about 12 (gasketed joints) to 14 (welded joints); if K1 = 1.0 for cast iron pipe, then this would suggest K1 = 0.5 or so for these kinds of pipe. Allowing for the lack of empirical evidence available at this time, and noting that at least one of these pipes 60-inch diameter failed in the 1989 Loma Prieta earthquake at low g levels, it is difficult to establish K1 or K2 constants with much certainty. The approach taken in this report is to set K1 and K2 as somewhat lower than 1.0, but not as low as suggested by Table A.3-18. - Riveted Steel. Use about 2 times the arc welded steel damage algorithm. - <u>Steel, Rubber Gasket</u>. Use the arc welded steel damage algorithm, but scaled by 1.2. - PVC, Rubber Gasket. Use the asbestos cement damage algorithm (rubber gasket). The rationale is that segmented pipe having similar joint qualities should have similar seismic performance. On a engineering judgment basis, plastic PVC pipe with rubber gasketed joints is somewhat better than similar AC pipe, due to plastic's better tensile strength capability, but is somewhat worse than AC pipe due to longer segment sections, thereby increasing the joint pullout demands. Lacking empirical evidence, we assume equivalent pipe properties. In practice, the relative capacity of rubber gasketed AC vs. PVC pipe is likely to be strongly correlated to the relative insertion depths for the specific installations (a shorter installation depth leads to a weaker pipe). # 4.4.7 Effect of Pipeline Diameter Various researchers over the past 20 years have considered that the diameter of the pipe has some bearing on the capacity of the pipe to withstand the effects of earthquake without damage. For example: - Section A.3.1 (Memphis study) suggests fragility curves which have a constant varying from 1.0 to 0.0, as pipeline diameter increases from 4 inches to over 40 inches. - Section A.3.11 (Loma Prieta) includes empirical evidence (Figure A-11) that shows a reduction in damage rate for larger diameter welded steel pipe, but no such clear trend for cast iron or asbestos cement pipe. - Appendix G (Northridge) includes empirical evidence that shows a reduction in damage rate for cast iron, asbestos cement and ductile iron pipes, with increasing diameter. The strong diameter trend (bigger diameter = much lower damage rate) shown for Northridge data (cast iron pipe) does not show up for Loma Prieta data (bigger diameter = about the same damage rate, possibly a slight decrease). The Loma Prieta data also shows an increasing damage rate with increasing diameter for asbestos cement pipe. The question is why? and how should the fragility curves account for this behavior. To answer "why?", ideally we would like an explanation which is based on strength of mechanics principles. Section A.3.11 provides some suggestions. A possible explanation of the reasons that small diameter pipe have shown higher damage rates in at least some earthquakes is that the small diameter pipes were located in the worst soil areas, and constructed with the lowest quality control. If these explanations are true, then the diameter effect seen in the Northridge dataset may not be true for another water system. Tables 4-7 and 4-8 presents damage data for the combined cities of Kobe, Ashiya and Nishinomiya for the 1995 Kobe earthquake [after Shirozu et al]. These tables suggest no particular diameter dependency for common diameter distribution pipes (4" to 12" diameter); a higher rate for very small diameter pipe (\leq 3" diameter, uncommon in the United States except for service laterals); and a moderately lower damage rate for larger diameter pipes (16" and larger). Tables 4-7 and 4-8 make no distinction for pipe diameter versus level or type of seismic hazard, so it is possible that the larger diameter pipes were located in areas with less shaking or less ground failure. For Table 4-8, the total number of repairs were 915 (ductile iron pipe) and 611 (cast iron pipe). | Pipe diameter | Repairs | Length (km) | Repair Rate per km | |---------------|---------|-------------|--------------------| | ≤ 75 mm | 505 | 266.1 | 1.898 | | 100 – 150 mm | 1,317 | 1,423 | 0.926 | | 200 - 250 mm | 412 | 439.9 | 0.937 | | 300 – 450 mm | 283 | 362.6 | 0.783 | | ≥ 500 mm | 87 | 169.5 | 0.513 | Table 4-7. Pipe Repair, 1995 Kobe Earthquake, By Diameter, All Pipe Materials | Pipe diameter | Repair Rate per km, | Repair Rate per km, | Ratio, DI to CI | |---------------|---------------------|---------------------|-------------------| | _ | Cast Iron Pipe | Ductile Iron Pipe | | | ≤ 75 mm | 2.600 | 1.029 | 0.40 | | 100 – 150 mm | 1.860 | 0.486 | 0.26 | | 200 - 250 mm | 1.687 | 0.545 | 0.32 | | 300 – 450 mm | 0.850 | 0.480 | 0.56 | | ≥ 500 mm | 0.301 | 0.061 | $0.\overline{20}$ | Table 4-8. Pipe Repair, 1995 Kobe Earthquake, By Diameter, CI and DI Pipe In conclusion, at this time, there is not enough empirical evidence to prove that there will always be a diameter effect for all pipe materials for any water system. However, the empirical evidence strongly indicates that some relationship does exist, and that the largest pipes (over 12 inch diameter) have damage rates that are lower than common diameter distribution pipes (4 inch to 12 inch diameter). # 4.5 Fault Crossing Pipe Damage Algorithms For fault crossings, the amount of offset and the pipe material are the critical parameters in determining whether the pipeline will break. Other parameters (soil backfill, angle of pipeline crossing, depth of burial) are also important. A simple vulnerability model is proposed as follows: - Determine the mean amount of fault offset along the entire length of the fault. - Damage algorithm: - Continuous pipeline (example: welded steel): $$P_{\text{no failure}} = 1 - 0.70 * \frac{\text{PGD}}{60}, \quad P_{\text{no failure}} \ge 0.05$$ • Segmented pipeline (example: cast iron with cemented joints): ``` \begin{array}{l} P_{no\;failure}=1.00\;,\;PGD=0\\ P_{no\;failure}=0.50\;,\;PGD=1\;to\;12\;inches\\ P_{no\;failure}=0.20\;,\;PGD=13\;to\;24\;inches\\ P_{no\;failure}=0.05\;,\;PGD=over\;24\;inches \end{array} ``` This simple vulnerability model should only be used for vulnerability analyses of a large inventory of pipelines that cross faults. For pipe-fault-specific conditions, it is recommended that analytical techniques such as those described in the ASCE Guidelines for the Seismic Design of Oil and Gas Pipeline Systems [1984] be used to evaluate pipe specific performance. #### 4.6 Other Considerations # 4.6.1 Single Pipeline Failure Algorithm To obtain a probability of failure for an individual pipeline link of length L, a Poisson probability distribution is used. $$P(x=k) = (\lambda L)^k e^{-\lambda L}/k!$$ where x is a random variable denoting the number of times the event of a broken pipe occurs, λ is the rate at which the event occurs, and λL is the average number of occurrences occurring over length L of pipe which is being examined. λ is determined as the highest value from the wave propagation and permanent ground deformation models described in prior sections. As a single break in a pipe puts the entire pipeline length out of service, the probability of service for an individual pipeline can be easily calculated by setting (k=0). For simplicity, one could assume that only break pipe repairs will put a pipeline out of service. $$P_{pipeline \; link \; i \; in \; service} \; = \; \text{-} \; e^{\text{-}\lambda L} = P_i$$ For a pipeline (named j) composed of many individual pipe links (P_i), the probability that the pipeline will not deliver flow through its entire length will be 1 minus the probability that all single links
are in service. Thus: Ppipeline j out of service = $$1 - \prod_{i=1}^{n} P_i$$ #### 4.6.2 Variability in Results The results presented in Section 4 show that there is widespread scatter in the track record of buried pipe performance in past earthquakes. There is considerable uncertainty and randomness which must be addressed in the development of pipeline fragility curves. Table 4-4 provides the lognormal standard deviations for the backbone fragility curves; these values are large, in part because the backbone fragility curves combine all empirical data for different pipe material and other conditions. In the following paragraphs, we discuss the sources of this variability, and provide recommendations for use of lognormal standard deviations when the backbone fragility curves of Table 4-4 are combined with the pipe-specific factors noted in Tables 4-5 and 4-6. For the present effort, we have developed damage algorithms using the commonly used damage "measurement" of Repair Rate per 1000 Feet. This is a measure of an overall or global description of pipe damage. We account for the variability in pipe performance by incorporating uncertainty and randomness. First, we incorporate randomness as to whether a particular geologic hazard will occur. Second, we incorporate uncertainty as to whether a particular pipe will fail, given that the hazard occurs. Randomness in the ground motion can be accounted by calculating the damage to the entire buried pipe system for the median ground motion hazards, and then recognizing that the response of any individual pipe may be different due to random differences in the local ground motions. When evaluating a large population of pipe (say over 1,000 miles of pipe), randomness in ground motions at one point should generally be counterbalanced by randomness in ground motion at another location, and the effects tend to cancel out. However, even with large populations of pipe, there still remains randomness in that the hazard attenuation model for a particular earthquake may not actually match the scatter in the observed motions. Based on the Table 4-4 backbone fragility curves and when applied to specific types of pipe using the modification factors in Tables 4-5 and 4-6, the user should consider the results as only being accurate within ±50% of the predicted damage (these ranges reflect about a 67% probability that the actual pipe damage will be within these bounds). This uncertainty band reflects a β of about 0.40. When evaluating a small population of pipe (say under 10 miles of pipe), randomness in ground motions plays an important factor, and the user should consider the results as only being accurate within $\pm 60\%$ of the predicted damage (these ranges reflect about a 67% probability that the actual pipe damage will be within these bounds). This uncertainty band reflects a β of about 0.56. This variability is due, in part, to the following factors: - Previous studies of past earthquakes have yielded repair rate data based upon limited assessments. Many times large areas were assessed a single MMI value, ignoring microzonation issues. Many times, the actual mileages of pipe, pipe type, and level of shaking or induced permanent ground deformations, were estimated. Detailed attributes for every pipe (materials, corrosive soil conditions, type of joints) were often not tabulated accurately. Databases with detailed reviews of pipe damage are relatively limited. - Some of the data collected to date are for earthquakes of relatively moderate levels of shaking. Some of the earthquakes created shaking levels in the range of 0.10 to 0.30 g peak ground accelerations in the areas which suffered the most pipe damage. At these levels of shaking, most pipes actually are not damaged: a reported repair rate of 1 per 1,000 feet (a high repair rate) actually means that only 1 in 83 12-foot long pipe segments actually fails. In other words, about 99% of the pipes are undamaged. This means that the empirical evidence is mostly for repair rates in the "tails" of the pipe's fragility distribution. - Intensity data, such as Modified Mercalli Intensity (MMI) for historical earthquakes, is very imperfect. For example, two different investigators can assign different intensities to the same data, as evidenced by assignments of MMI VIII or X to the city of Coalinga, as affected by the 1983 Coalinga earthquake [Hopper et al, Thiel and Zsutty]. The same is true for other measures of seismic intensity such as peak ground acceleration, velocity, vertical or lateral ground movements particularly when these have been inferred based upon MMI data and not based upon instrumental recordings. - Prior to widespread use if GIS systems (generally pre-1990), estimates on the length of pipeline exposed to the earthquake are often approximate, with respect to materials, joints, and total lengths of pipe. Very little data is available which relates pipelines age or soil corrosivity to levels of damage. - Repair data have often been reconstructed from the memory of workers or from incomplete or inaccurate data sets. - One repair can be associated with several leaks in the same pipe barrel; conversely, one break can lead to several repairs. - Although data on certain pipe materials can be complete at specific MMI intensities, it is not usually complete for all pipe materials at all intensities. Also, certain pipe materials and/or joint units have very limited actual earthquake performance data. Also, the quality of construction can vary among different countries or cities from which earthquake data was obtained. - Repair data for some earthquake events represent data for limited lengths of pipe in high intensity shaken areas this data can often lead to misleading damage trends, due to small sample size effects. - Repair data available from the literature often incorporate damage from ground shaking (wave propagation), as well as ground movements (e.g., surface faulting, liquefaction, landslides). The quality of the process of dis-aggregating this data into components directly attributed to one type of earthquake hazard lends uncertainty into the resulting data. Such variabilities means that judgment must be used in applying this empirical data in the development of damage algorithms. We have relied more heavily on the well documented 1989 Loma Prieta damage to EBMUD's system and 1994 Northridge damage to LADWP's system than on some of the older empirical data sets. Undoubtedly, as new empirical data sets become available, improvements in pipe damage algorithms will be possible. #### 4.7 References ASCE, 1984, Guidelines for the Seismic Design of Oil and Gas Pipeline Systems, prepared by the ASCE Technical Council on Lifeline Earthquake Engineering, D. Nyman Principal Investigator, 1984. Eguchi, R., T., Legg, M.R., Taylor, C. E., Philipson, L. L., Wiggins, J. H., "Earthquake Performance of Water and Natural Gas Supply System," J. H. Wiggins Company, NSF Grant PFR-8005083, Report 83-1396-5, July 1983. Eidinger, J. "Lifelines, Water Distribution System," in The Loma Prieta, California, Earthquake of October 17, 1989, Performance of the Built Environment - Lifelines, US Geological Survey Professional Paper 1552-A, pp A63-A80, A. Schiff Ed. December 1998. Hamada, M., Yasuda, S., Isoyama, R., and Emoto, K., *Study on Liquefaction Induced Permanent Ground Displacements*, Report by Japan Association for the Development of Earthquake Prediction, Nov. 1 1986. Hopper, M. G., Thenhaus, P.C., Barnhard, L., Algermissen, S.T. "Damage Survey in Coalinga, California, for the Earthquake of May 2, 1983," <u>Coalinga California, Earthquake of May 2, 1983</u>, Special Publication 66. Sacramento, California, California Division of Mines and Geology, 1984. Isenberg, J., "Seismic Performance of Underground Water Pipelines in the Southeast San Fernando Valley in the 1971 San Fernando Earthquake," <u>Grant Report No. 8</u>, Weidlinger Associates, New York, NY, Sept. 1978. Isenberg, J., "Role of Corrosion in Water Pipeline performance in Three U.S. Earthquakes," <u>Proceedings</u>, 2nd U.S. National Conference on Earthquake Engineerings, Stanford, CA Aug. 1979. - Isenberg, J., Taylor, C. E., "Performance of Water and Sewer Lifelines in the May 2, 1983, Coalinga California Earthquake," <u>Lifeline Earthquake Engineering, Performance, Design and Construction</u>, ASCE, New York, NY Oct. 1984. - Newby, A. B., "Pipelines Ride the Shockwaves," Proceedings 45, Pacific Coast Gas Association, San Francisco, California 1954. - Newmark, N.M., and Hall, W. J., "Pipeline Design to Resist Large Fault Displacement," Presented at the June 1975 U. S. National Conference of Earthquake Engineering, Ann Arbor, Michigan. - NIBS, Earthquake Loss Estimation Methodology HAZUS97: Technical Manual, Federal Emergency Management Agency, Washington, D.C., Vol. 2, 1997. - O'Rourke, M.J., and Ayala, G., 1993, Pipeline Damage to Wave Propagation, *Journal of Geotechnical Engineering*, ASCE, Vol. 119, No. 9, 1993. - O'Rourke, M., and Nordberg, C., "Analysis Procedures For Buried Pipelines Subject to Longitudinal and Transverse Permanent Ground Deformation," Proceedings—3rd U.S.-Japan Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures for Soil Liquefaction. - O'Rourke, T.D., and Jeon, S-S., Factors Affecting the Earthquake Damage of Water Distribution Systems, in Optimizing Post-Earthquake Lifeline System Reliability, TCLEE Monograph No. 16, ASCE, 1999. - O'Rourke, T. D., and Tawfik, M.S. "Effects of Lateral Spreading on Buried Pipelines During the 1971 San Fernando Earthquake," Earthquake Behavior and Safety of Oil and Gas Storage Facilities, Buried Pipelines and Equipment, PVC,-Vol.77, New York, ASME, 1983. - O'Rourke, T. D., and Trautmann, C. H., "Earthquake Ground Rupture Effects on Jointed Pipe," *Proceedings on the 2nd Specialty Conference of the Technical Council on Lifeline Earthquake Engineering*, ASCE, August, 1981. -
Porter, K.A., Scawthorn C., Honegger, D. G., O'Rourke, T.D., and Blackburn, F., "Performance of Water Supply Pipelines in Liquefied Soil," Proceedings—4th U.S.-Japan Workshop on Earthquake Disaster Prevention for Lifeline Systems, NIST Special Publication 840, August 1992. - Sadigh, R.K., and Egan, J.A., "Updated Relationships For Horizontal Peak Ground Velocity and Peak Ground Displacement For Shallow Crustal Earthquakes," *Proceeding of 6th U.S. National Conference on Earthquake Engineering*, EERI, Seattle, June 1998. - Sato, Ryo and Myurata, Masahiko, GIS-Based Interactive and Graphic Computer System to Evaluate Seismic Risks on Water Delivery Networks, Dept. of Civil Engineering and Operations Research, Princeton University, December 1, 1990. - Shirozu, T., Yune, S., Isoyama, R., and Iwamoto, T., "Report on Damage to Water Distribution Pipes Caused by the 1995 Hyogoken-Nanbu (Kobe) Earthquake," *Proceedings from the 6th Japan-U.S. Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures Against Soil Liquefaction*, National Center for Earthquake Engineering Research Report NCEER-96-0012, September 1996. - Singhal, A. C. "Nonlinear Behavior of Ductile Iron Pipeline Joints," Journal of Technical Topics in Civil Engineering 110, No. 1. ASCE, May 1984. Thiel, C.C. Jr., Zsutty, T.C., "Earthquake Parameters and Damage Statistics," San Francisco, Forrell/Elsessor Engineers, 1987. Toprak, Selcuk, "Earthquake effects on buried pipeline systems," PhD Dissertation, Cornell University, August, 1998. Wald, D.J., Quitoriano, V., Heaton, T.H., and Kanamori, H., "Relationships between Peak Ground Acceleration, Peak Ground Velocity, and Modified Mercalli Intensity in California," *Earthquake Spectra*, Vol. 15, No. 3, August 1999. Wang, L., "A New Look Into the Performance of Water Pipeline Systems From 1987 Whittier Narrows, California Earthquake," Department of Civil Engineering, Old Dominion University, No. ODU LEE-05, January 1990. Figure 4-1. Bin Median Values (Wave Propagation) Figure 4-2. Vulnerability Functions (Wave Propagation) Figure 4-3. Median, 84th and 16th Percentile Functions (Ground Shaking) Figure 4-4. Comparison of Vulnerability Functions (Wave Propagation) Figure 4-5. Bin Median Values (Permanent Ground Deformation) Figure 4-6. Vulnerability Functions (Permanent Ground Deformation) Figure 4-7. Vulnerability Functions (Permanent Ground Deformation) Expanded Scale Figure 4-8. Median, 84th and 16th Percentile Functions (Permanent Ground Deformation) Figure 4-9. Comparison of Vulnerability Functions (Permanent Ground Deformation) Figure 4-10. Pipe Damage - By Material - Regression Using Data Up to PGV=35 In/sec # 5.0 Water Tank Fragility Formulations # 5.1 Factors that Cause Damage to Water Tanks When applying fragility curves to water tanks, the analyst is often interested in several types of information: type and extent of damage and whether such damage impacts the functionality of the tank; percent dollar loss to the tank; time it will take to repair the damage to various states of operability. To assess this information, the analysis will usually need the following: - A description of the seismic hazard at the tank site. Depending on the form of fragility curve used, the hazard could be expressed in terms of peak ground acceleration (PGA), or a response spectrum at a particular damping level. If the tank site is projected to undergo some sort of liquefaction / landslide movement, then an estimate of the permanent ground deformation (PGD) that will affect the tank is needed. Tanks subject to fault offset are not covered by this report. - A suite of fragility curves. Each curve will represent one damage state. For example, a damage state could be: - Anchor bolts stretched; tank remains functional. - Inlet-outlet pipe breaks, all water leaks out. - Bottom course buckles, weld fails, all water leaks out. - Roof system partially collapses into the tank. - The replacement value of the tank. This represents the cost to build an identical volume tank at the same site. Often, the replacement value will include the value of demolition of the old tank. The value does not include the value of the land. The value should include all costs involved in replacing the tank, including planning, engineering, construction, construction management and inspection costs. A rough guideline to estimate these costs is provided in Appendix B.2. Appendix B.1 examines the relationship between damage states, repair cost and post-earthquake functionality. - A correlation between the damage state and economic losses. For example, it might be said that if the anchor bolt damage state occurs, then the direct repair cost for the tank is some percentage of the replacement value of the tank. Economic impacts other than direct damage can also occur, such as: losses due to inundation of nearby locations; losses due to loss of water for fire fighting purposes; etc. It is beyond the scope of the current effort to examine economic losses due to damage of tanks; see Eidinger and Avila [1999] for methods to treat all types of economic impacts due to damage to various components of water systems. Sections 5.1.1 through 5.1.8 describe failure modes that are known to have occurred to steel storage tanks. Implications are made about tank design where appropriate. Further details of these possible failure modes are documented in [NZNSEE 1986, Kennedy and Kassawara 1989]. ## 5.1.1 Shell Buckling Mode One of the more common forms of damage in steel tanks involves outward buckling of the bottom shell courses, a phenomenon often termed "elephants foot". Sometimes the buckling occurs over the full circumference of the tank. Buckling of the lower courses has occasionally, although not always, resulted in the loss of tank contents due to weld or piping fracture, and in some cases total collapse of the tank. Tanks with very thin shells, such as stainless steel shells common for beer, wine and milk storage tanks, have displayed another type of shell buckling mode, involving diamond-shaped buckles a distance above the base of the tank. # 5.1.2 Roof and Miscellaneous Steel Damage Sloshing motion of the tank contents occurs during earthquake motion. The actual amplitude of motion at the tank circumference which have been estimated, on the basis of scratch marks produced by floating roofs, to have exceeded several meters in some cases. For full or near full tanks, resistance of the roof to the free sloshing results in an upward pressure distribution on the roof. Common design codes [API, AWWA through the year 2000] do not provide guidance on the seismic design of tank roof systems for slosh impact forces, and modern tanks (post 1980) otherwise designed for earthquake forces for elephant foot buckling or other failure modes may still have inadequate designs for roof slosh impact forces. In past earthquakes, there has frequently been damage to the frangible joints between walls and cone roofs, with accompanying spillage of tank contents over the top of the wall. Extensive buckling of the upper courses of the shell walls has occurred. Floating roofs have also sustained extensive damage to support guides from sloshing of contents. Steel roofs with curved knuckle joints appear to perform better due to slosh impact forces, but these too have had their supporting beams damaged from slosh impact forces. Lateral movement and torsional rotations due to ground shaking have caused broken guides, ladders and other appurtenances attached between the roof and the bottom plate. Light weight wood roofs often used in water storage tanks) are sometimes not designed for any seismic inertial loads, and are especially vulnerably to sloshing-induced damage. Extensive damage to roofs can sometimes cause extensive damage to the upper course of a steel tank. However, roof damage or broken appurtenances, although expensive to repair, usually does not lead to more than a third of total fluid contents loss. #### 5.1.3 Anchorage Failure Many steel tanks have hold down bolts / straps / chairs. However, these anchors may be insufficient to withstand the total imposed load in large earthquake events, and can be damaged. The presence of anchors, as noted by field inspection, may not preclude anchorage failure or loss of contents. Seismic overloads will often result in anchor pull out, stretching or failure. However, failure of an anchor does not always lead to loss of tank contents. #### 5.1.4 Tank Support System Failure Steel and concrete storage tanks supported above grade by columns or frames have failed due to the inadequacy of the support system under lateral seismic forces. This occurred to a steel cement silo (Alaska, 1964) and a concrete tank (Izmit, Turkey 1999). Many elevated concrete water reservoirs failed or were severely damaged in the 1960 Chilean earthquake. Such failures most often lead to complete loss of contents. #### 5.1.5 Foundation Failure Tank storage farms have frequently been sited in areas with poor foundation conditions. In past earthquakes (Nigata, 1964), liquefaction of materials under tanks, coupled with imposed seismic moments on the tank base from lateral accelerations, have resulted in base rotation and gross settlements of the order of several meters. In other cases on firm foundations, fracture of the base-plate welds has occurred in tanks not restrained, or inadequately restrained against uplift. In these cases the seismic accelerations have resulted in uplift displacements on the tension side (up to 14 inches recorded in 1971 San Fernando) of the tank. Since the baseplate is held down by hydrostatic pressure of the tank contents, the base weld is subject to high stresses, and fracture may result. In some cases, the resulting loss of liquid has resulted in scouring of the foundation materials in the vicinity, reducing support to the tank in the damaged area, and exacerbating the damage. A large underground reinforced concrete reservoir,
part of the Balboa water treatment plant, suffered severe damage in the 1971 San Fernando earthquake. This damage apparently was a consequence of foundation failure. The walls, roof slab, floor slab and some columns of this 450 foot x 450 foot x 40 foot high reservoir were extensively damaged, particularly along construction joints. This damage was apparently caused by movement of the filled ground which had about 50% relative density, due to consolidation (up to 1.5 feet) and sliding produced by ground shaking. Another common cause of failure is severe distortion of the tank bottom at or near the tank side wall due to a soil failure (soil liquefaction, slope instability, or excessive differential settlement). These soil failures are best prevented through proper soil compaction prior to placement of the tank and through the use of a reinforced mat foundation under the tank. Another less common cause of failure is due to tank sliding. There is no known case where an anchored tank with greater than 30 foot diameter has slid. Sliding is possible a concern for unanchored smaller diameter tanks. ## 5.1.6 Hydrodynamic Pressure Failure Tensile hoop stresses can become large due to shaking induced pressures between the fluid and the tank, and lead to splitting and leakage. This phenomenon has occurred in riveted tanks where leakage at the riveted joints has occurred from seismic pressure-induced yielding. This occurrence occurs more often in the upper courses. No known welded steel tank has actually ruptured due to seismically induced hoop strains; however, these large tensile hoop stresses can contribute to the likelihood of "elephant foot" buckling near the tank base due to overturning moment. Hydrostatic pressure failure may also be a cause for failure in concrete tanks, due to excessive hoop tensile forces in the steel reinforcement. This was the apparent mode of damage for a concrete tank near Palo Alto, in the 1989 Loma Prieta earthquake. This failure mode may be aggravated by corrosion of hoop direction prestressing wires. #### 5.1.7 Connecting Pipe Failure One of the more common causes of loss of tank contents in earthquakes has been fracture of piping at the connection to the tank. This generally results from large vertical displacements of the tank as a result of tank buckling, wall uplift, or foundation failure. This has happened to steel tanks in the 1992 Landers earthquake. Failure of rigid piping connecting adjacent tanks has also resulted from relative horizontal displacements of the tanks. Piping failure has also caused extensive scour in the foundation materials. Another failure mode has been the breaking of pipe which enters the tank from underground, due to relative movement of the tank and the pipe. This occurred several times during the 1985 Chilean earthquake. Kennedy and Kassawara have suggested that almost any type of flexibility loop in a pipe between the tank and the independent piping supports should be sufficient for a high confidence of low probability of failure at Peak Ground Acceleration levels up to 0.5g. However, if there is a straight run (i.e. no flexibility loop) from where the pipe is independently rigidly supported, and there are relative anchor motions, they suggest that the tank nozzle and tank shell should be checked. For example, rigid overflow pipes attached to steel tanks have exerted large forces on the tank wall supports due to relative movement of the tank to the ground; the wall supports of one such pipe tore out of the shell of an oil tank in Richmond, due to the 1989 Loma Prieta earthquake; the pipe support failure left a small hole in the tank shell around mid height of the tank. #### 5.1.8 Manhole Failure Loss of contents has occurred due to overloads on the manhole covers. This type of failure has occurred in thin walled, stainless steel tanks used for wine storage. This kind of failure has also occurred at manhole cover doubler plates when these doubler plates extend low enough in the bottom course to be highly strained in the event of elephant foot buckling. # 5.2 Empirical Tank Dataset In order to examine the empirical performance of tanks, this report updates and supplements the available empirical datasets described in Appendix B. The procedure was as follows: - The inventory of 424 tanks developed by Cooper [Cooper, 1997] was reviewed from source material. For the most part, this inventory was found to be correct. In a few instances, the damage states for broken pipes were adjusted as follows: if damage to a pipe created only slight leaks on minor repairs (such as damage to an overflow pipe), the damage state was assigned = 2 (same as O'Rourke and So). However, if damage to a pipe led to complete loss of contents (complete breaking of inlet-outlet line), then the damage state was assigned = 4. This is more consistent with the performance of the tank (a broken inlet-outlet line puts the tank out of service at DS=4, while a leaking overflow line does not put the tank out of service at DS=2); also, a damaged inlet/outlet line usually means that there has been substantial uplift of the base of the tank. Also, substantial buckling in the upper courses was defined as DS=2 by O'Rourke and So, but DS = 3 in the current effort; this reflects that wall buckling has occurred, without leak of tank contents, and that this type of damage is more costly to repair than damage to the roof system alone. Due to incomplete descriptions of actual damage to some tanks, the definition of damage state between DS = 2, DS = 3 and DS = 4 is sometimes left to judgment. - The ground motion parameters for the 1964 Alaska earthquake were established based on conversion from MMI to PGA, and by examining attenuation models for subduction zone earthquakes. In this way, the significant set of damaged tanks (32 damaged tanks out of a total of 39 tanks) from that earthquake can be added into the fragility analysis. It should be understood that there were no accelerometer recordings available for this earthquake, and MMI maps are not all that precise, and that the 90 second to 180 second duration of strong shaking from this event greatly exceeds the duration of shaking from most other events. - 13 tanks from the Morgan Hill 1984 earthquake were added to the analysis. - 38 tanks from the Costa Rica 1991 earthquake were added to the analysis. - The ground motion parameters for the 1983 Coalinga earthquake are refined using a combination of attenuation relationships, recorded instrumental motions, and information from Hashimoto [1989]. The O'Rourke and So effort approximated all tanks to have experienced 0.71g. The only near field instruments were located at the Pleasant Valley pump station, where the horizontal recorded motions were: 0.54g and 0.45g (instrument in switchyard), and 0.28g and 0.33 g (instrument in basement of building). These instruments were located 9 km from the epicenter, which, using attenuation for rock site, would give median PGA = 0.37g. With regards to the MMI scale, the highest intensity suggested for this earthquake if MMI VIII, which roughly translates to a PGA = 0.26g to 0.45g (McCann relationship). The resulting ground motions for the bulk of the oil tanks in the area are from 0.39g to 0.62g; this is lower than the 0.71g assumed by O'Rourke and So. While some tanks may have experienced the very high g levels (0.71g), it is also likely that some tanks experienced more moderate values (under 0.4g). - 7 tanks from the San Fernando 1971 earthquake were added to the database. - 3 tanks from the Coalinga 1983 earthquake were added to the database. - 5 tanks from the Chile 1985 earthquake were added to the database. - 3 tanks from the Adak (Alaska) 1986 earthquake were added to the database. - 3 tanks from the Whittier 1987 earthquake were added to the database. - 11 tanks from the New Zealand 1987 earthquake were added to the database. - Individual tanks from the 1975 Ferndale, 1980 Ferndale, 1980 Greenville, 1972 Managua, 1978 Miyagi-ken-ogi earthquakes were added to the database. An additional 1,670 tanks were exposed to relatively low levels (0.03 to about 0.10g) of ground motions in the 1989 Loma Prieta earthquake. Only 2 of these tanks are known to have suffered slight damage to roof structures. For purposes of developing fragility curves, this large population of tanks is considered as strong evidence that there is a high likelihood of no damage to tanks at ground motions at or below 0.10g. All told, there are 532 tanks in the database that experienced strong ground motions (0.10g or higher), with an additional 1,670 tanks in the database which experienced low levels of ground motion (0.03g to 0.10g). For the analysis that follows uses only the 532 tanks with ground motions of 0.10g or higher. Table 5-1 summarizes the empirical database. Tables B-8 through B-18 provide the complete tank database. | Event | No. of | PGA Range | Average PGA | PGA Source | |-----------------------------|--------|--------------|-------------|---| | | Tanks | (g) | (g) | | | 1933 Long Beach | 49 | | 0.17 | Cooper 1997 | | 1952 Kern County | 24 | | 0.19 | Cooper 1997 | | 1964 Alaska | 39 | 0.20 to 0.30 | 0.22 | This report | | 1971 San Fernando | 27 | 0.20 to 1.20 | 0.51 | Wald et al 1998 | | 1972 Managua | 1 | 0.50 | 0.50 | Hashimoto
1989 | | 1975 Ferndale | 1 | 0.30 | 0.30 | Hashimoto
1989 | | 1978 Miyagi-ken-
ogi | 1 | 0.28 | 0.28 | Hashimoto
1989 | | 1979 Imperial
Valley | 24 | 0.24 to 0.49 | 0.24 | Haroun 1983 | | 1980 Ferndale | 1 | 0.25 | 0.25 | Hashimoto
1989 | | 1980 Greenville | 1 | 0.25 | 0.25 | Hashimoto
1989 | | 1983 Coalinga | 48 | 0.20 to 0.62 | 0.49 | This report,
Hashimoto
1989 | | 1984 Morgan Hill | 12 | 0.25 to 0.50 | 0.30 | This report | | 1985 Chile | 5 | 0.25 | 0.25 | Hashimoto
1989 | | 1986 Adak | 3 | 0.20 | 0.20 | Hashimoto
1989 | | 1987 New Zealand | 11 | 0.30 to 0.50 |
0.42 | Hashimoto
1989 | | 1987 Whittier | 3 | 0.17 | 0.17 | Hashimoto
1989 | | 1989 Loma Prieta | 141 | 0.11 to 0.54 | 0.16 | Cooper 1997 | | 1989 Loma Prieta
(Low g) | 1,670 | 0.03 to 0.10 | 0.06 | This report | | 1991 Costa Rica | 38 | 0.35 | 0.35 | This report | | 1992 Landers | 33 | 0.10 to 0.56 | 0.30 | Cooper 1997,
Ballantyne and
Crouse 1997,
Wald et al 1998 | | 1994 Northridge | 70 | 0.30 to 1.00 | 0.63 | Brown et al
1995, Wald et al
1998 | | Total (excl. low g) | 532 | 0.10 to 1.20 | 0.32 | | Table 5-1. Earthquake Characteristics for Tank Database Table 5-2 provides the breakdown of the number of tanks with various damage states. The value in the PGA column in Table 5-2 is calculated as the average PGA for all tanks in a PGA range; the ranges were set in steps of 0.10g. (Note: 1 tank was in damage state 5 collapsed due to collapse of an adjacent tank – this tank was removed from the database used for developing fragilities). | PGA (g) | All Tanks | DS = 1 | DS = 2 | DS = 3 | DS = 4 | DS = 5 | |---------|-----------|--------|--------|--------|--------|--------| | 0.10 | 4 | 4 | 0 | 0 | 0 | 0 | | 0.16 | 263 | 196 | 42 | 13 | 8 | 4 | | 0.26 | 62 | 31 | 17 | 10 | 4 | 0 | | 0.36 | 53 | 22 | 19 | 8 | 3 | 1 | | 0.47 | 47 | 32 | 11 | 3 | 1 | 0 | | 0.56 | 53 | 26 | 15 | 7 | 3 | 2 | | 0.67 | 25 | 9 | 5 | 5 | 3 | 3 | | 0.87 | 14 | 10 | 0 | 1 | 3 | 0 | | 1.18 | 10 | 1 | 3 | 0 | 0 | 6 | | Total | 532 | 331 | 112 | 47 | 25 | 16 [1] | Table 5-2. Complete Tank Database Note [1]. Most of the collapsed tanks were made of riveted steel. Application of Damage State 5 for welded steel tanks should be used with caution. #### 5.2.1 Effect of Fill Level Fragility curves were calculated for a variety of fill levels in the tank database. Table 5-3 provides the results. In Table 5-3, "A" represents the median PGA value (in g) value to reach or exceed a particular damage state, and Beta is the lognormal standard deviation. N is the number of tanks in the particular analysis. | DS | A, g | Beta | |------|---------|------|----------|------|----------|------|----------|------|----------|------| | DS≥2 | 0.38 | 0.80 | 0.56 | 0.80 | 0.18 | 0.80 | 0.22 | 0.80 | 0.13 | 0.07 | | DS≥3 | 0.86 | 0.80 | >2.00 | 0.40 | 0.73 | 0.80 | 0.70 | 0.80 | 0.67 | 0.80 | | DS≥4 | 1.18 | 0.61 | | | 1.14 | 0.80 | 1.09 | 0.80 | 1.01 | 0.80 | | DS=5 | 1.16 | 0.07 | | | 1.16 | 0.40 | 1.16 | 0.41 | 1.15 | 0.10 | | | All Tan | ks | Fill < 5 | 0% | Fill ≥ 5 | 0% | Fill ≥ 6 | 0% | Fill ≥ 9 | 0% | | | | | N=95 | | N=251 | | N=209 | | N=120 | | Table 5-3. Fragility Curves, Tanks, As a Function of Fill Level The following trends can be seen in Table 5-3: - Tanks will low fill levels (below 50%) have much higher median acceleration levels to reach a particular damage state than tanks which are at least 50% filled. - Tanks with low fill levels have not been seen to experience damage states 4 or 5 (elephant foot buckling with leak or other damage leading to rapid loss of all contents; collapse). Thus, no values are given. - Tanks with fill levels 90% or higher have moderately lower fragility levels than tanks with fill levels 50% or higher. Most water system distribution tanks are kept at fill levels between 80% and 100%, depending upon the time of day. If no other attributes of a given water storage tank are known, then the fragilities for the 90% fill level or higher should be used. Oil tanks can often have fill levels less than 50%. - The Beta values are mostly = 0.80. This reflects the large uncertainty involved in the tank database. For example, site PGA values were generally estimated using attenuation or MMI to PGA conversions (average horizontal motion), but in some cases the PGA reported is based on the largest of two horizontal PGA components from a nearby accelerometer; site soil conditions are undifferentiated (could have been rock or soil, which has a significant impact on spectral accelerations for both the impulsive and convective modes of liquid motions in a tank); tank construction attributes like wall thickness are not considered; damage descriptors were not always precise. It is recognized that Beta values would normally be in the 0.30 to 0.45 range for a tank-specific calculation; however, the regression analysis showed that there was a larger standard error in the curve fitting process for most cases with Beta under 0.80. • The fragility values for the DS=5 (collapse) show little variation and small beta values. This reflects that only a small number of tanks actually collapsed (gross movement of the shell). The collapse mechanisms could have been initiated by gross elephant foot buckling, or gross roof damage (possibly due to upper level diamond buckling). A possible better way to describe this damage state would be to assume that about 6% of all tanks reaching damage state 2 or above will actually collapse (16 collapses in 200 tanks that had some form of damage). Most of the collapsed tanks were riveted steel, and this attribute is not common in most modern (post 1950) steel tanks, and so use of this damage state should be used with caution. The empirical fragility parameters in Table 5-3 can be compared to those suggested by O'Rourke and So in Table B-7. The following observations are made: • The empirical fragility parameters for Fill ≥50% in Table 5-3 is based on a sample size of N=251 tanks. The empirical fragility curves (O'Rourke and So) for Fill ≥50% in Table B-7 is based on a sample size of N=133 tanks. The largest difference between the two analyses is for DS=2, where the complete dataset has a median A = 0.18g, and the O'Rourke and So dataset has a median A = 0.49g. Table 5-4 provides the raw data used to prepare the results in Table 5-3, and it is clear that the majority of tanks will fills ≥ 50% have sustained some type of damage at PGA=0.18g or above. One contributing reason for this large difference is that the O'Rourke and So analysis excluded all damage from the Alaska earthquake (32 of 39 tanks damaged). | PGA (g) | All Tanks | DS = 1 | DS = 2 | DS = 3 | DS = 4 | DS = 5 | |---------|-----------|--------|--------|--------|--------|--------| | 0.10 | 1 | 1 | 0 | 0 | 0 | 0 | | 0.17 | 77 | 22 | 32 | 12 | 8 | 3 | | 0.27 | 43 | 16 | 13 | 10 | 4 | 0 | | 0.37 | 22 | 3 | 11 | 4 | 3 | 1 | | 0.48 | 25 | 12 | 9 | 3 | 1 | 0 | | 0.57 | 48 | 22 | 14 | 7 | 3 | 2 | | 0.66 | 15 | 4 | 2 | 3 | 3 | 3 | | 0.86 | 10 | 7 | 0 | 0 | 3 | 0 | | 1.18 | 10 | 1 | 3 | 0 | 0 | 5 | | Total | 251 | 88 | 84 | 39 | 25 | 15 | *Table 5-4. Tank Database, Fill* ≥ 50% #### 5.2.2 Effect of Anchorage Two sets of HAZUS [HAZUS, 1997] fragility curves are presented in Table B-7. The HAZUS curves are based on analytical development of fragility curves for anchored and unanchored steel tanks which had been designed to various editions of the AWWA D100 standard from 1950 to 1990. The HAZUS curves clearly suggest that anchored tanks should perform better than unanchored tanks. The most recent 1996 edition of the AWWA D100 standard has made a significant change for the design compressive allowable for anchored tanks as compared to prior editions of that standard. Basically, the AWWA D100-1996 allows the compressive allowable for unanchored tanks to take credit for the beneficial effects of internal pressure; whereas this is not allowed for anchored tanks. It is unclear as to the rational for this unequal treatment, and it would be expected that tank owners may trend towards unanchored tank design to achieve cost savings; while implicitly accepting worse tank performance in future earthquakes. It is expected that tanks designed to the AWWA D100-1996 standard would be even more resistant to elephant foot buckling failure modes than unanchored tanks designed to the AWWA D100-96. The empirical database was analyzed to assess the relative performance of anchored versus unanchored tanks. All tanks in the empirical database were designed prior to the AWWA D100-1996 code, and likely used equal compressive stress allowable for the tank shell, whether anchored or unanchored. Since fill level has been shown to be very important in predicting tank performance, only tanks with fill levels $\geq 50\%$ are considered in this analysis. Table 5-5 shows the empirical database for anchored tanks with fill levels $\geq 50\%$. Tanks in Table 5-4 with uncertain anchorage were assumed to be unanchored. | PGA (g) | All Tanks | DS = 1 | DS = 2 | DS = 3 | DS = 4 | DS = 5 | |---------|-----------|--------|--------|--------|--------|--------| | 0.10 | 0 | 0 | 0 | 0 | 0 | 0 | | 0.19 | 13 | 13 | 0 | 0 | 0 | 0 | | 0.27 | 16 | 14 | 1 | 1 | 0 | 0 | | 0.39 | 5 | 3 | 1 | 0 | 1 | 0 | | 0.50 | 7 | 6 | 1 | 0 | 0 | 0 | | 0.58 | 5 | 2 | 1 | 1 | 0 | 1 | | 0.90 | 1 | 1 | 0 | 0 | 0 | 0 | | 1.20 | 1 | 0 | 1 | 0 | 0 | 0 | | Total | 46 | 37 | 5 | 2 | 1 | 1 | Table 5-5. Anchored Tank Database, Fill ≥ 50% | PGA (g) | All Tanks | DS = 1 | DS = 2 | DS = 3 | DS = 4 | DS = 5 | |---------|-----------|--------|--------|--------|--------|--------| | 0.10 | 1 | 1 | 0 | 0 | 0 | 0 | | 0.17 | 65 | 10 | 32 | 12 | 8 | 3 | | 0.27 | 27 | 2 | 12 | 9 | 4 | 0 | | 0.36 | 17 | 0 | 10 | 4 | 2 | 1 | | 0.47 | 19 | 7 | 8 | 3 | 1 | 0 | | 0.56 | 43 | 20 | 13 | 6 | 3 | 1 | | 0.66 | 15 | 4 | 2 | 3 | 3 | 3 | | 0.86 | 9 | 6 | 0 | 0 | 3 | 0 | | 1.18 | 9 | 1 | 2 | 0 | 0 | 6 | | Total | 205 | 51 | 79 | 37 | 24 | 14 | Table 5-6. Unanchored Tank Database, Fill ≥ 50% | DS | A, g | Beta | |------|----------|------|------------|------|------------|------|---------|------|-----------|------| | DS≥2 | 0.18 | 0.80 | 0.71 | 0.80 | 0.15 | 0.12 | 0.30 | 0.60 | 0.15 | 0.70 | | DS≥3 | 0.73 | 0.80 | 2.36 | 0.80 | 0.62 | 0.80 | 0.70 | 0.60 | 0.35 | 0.75 | | DS≥4 | 1.14 | 0.80 | 3.72 | 0.80 | 1.06 | 0.80 | 1.25 | 0.65 | 0.68 | 0.75 | | DS=5 | 1.16 | 0.80 | 4.26 | 0.80 | 1.13 | 0.10 | 1.60 | 0.60 | 0.95 | 0.70 | | | Fill ≥ 5 | 0% | Fill ≥ 50% | | Fill ≥ 50% | | Near Fu | ıll | Near Full | | | | All | | Anchor | ed | Unanch | | Anchor | | Unanch | |
 | N=251 | | N=46 | | N=205 | [1] | HAZU | S | HAZU | S | Table 5-7. Fragility Curves, Tanks, As a Function of Fill Level and Anchorage Note [1]. The low beta values (0.12, 0.10) reflect the sample set. However, beta = 0.80 is recommended for use for all damage states for regional loss estimates for unanchored steel tanks with fill \geq 50% unless otherwise justified. As seen in Table 5-7, the empirical evidence for the benefits of anchored tanks is clear. The median PGA value to reach various damage states is about 3 to 4 times higher for anchored tanks as for unanchored tanks. It should be noted, however, that the anchored tank database (N=46) is much smaller than the unanchored tank database (N=251), and fill levels may not have been known for all tanks in the anchored tank database. Also, it has been suggested by the SQUG steering group [personal communication, A. Schiff, 2000], that the anchored tank database by Hashimoto [1989] may include PGA values which may have been higher than actually experienced by some tanks. Also, some of the anchored tanks in the database are relatively smaller (under 100,000 gallon capacity) than most other tanks in the database. Even with these considerations, the empirical evidence strongly suggests that anchored tanks outperform unanchored tanks. When comparing the current empirical fragility curves to the HAZUS curves, the following observations can be made: - The HAZUS curves for unanchored tanks are in the same range as the empirical curves. Note that the empirical curves in Table 5-7 are for tanks fill ≥ 50%, while the HAZUS curves are for nearly full tanks. Table 5-3 shows that there is a modest decrease in seismic performance as fill level goes up. - The HAZUS curves show a marked increase in capacity for anchored tanks as compared to unanchored tanks. The empirical database shows an even larger increase. As the empirical database for anchored tanks is small for DS=3 and higher, the very high PGA values suggested (2.36 to 4.26g for DS=3 to 5) is based on limited extrapolation, and possibly should not be used directly; instead, some temperance between the empirical database and the HAZUS values for anchored tanks might be appropriate for simple loss estimation studies. ### 5.2.3 Effect of Permanent Ground Deformations There is insufficient information in the empirical dataset to establish fragility curves for tanks subjected to PGDs from landslide or liquefaction. The following fragility levels are based on judgment, and are incorporated into the fragility parameters in Tables 5-8 through 5-16: • Steel tanks. There would be a 50% change of substantial tank damage if a steel tank experiences a differential offset of 36 inches. By differential offset, it is meant that the amount of PGD varies from one end to the other end of the tank by 36 inches. This damage state corresponds to a complete loss of the tank. - For concrete tanks, the amount of PGD needed to reach a similar damage state is assumed to be 24 inches. This reflects the assumed lower tolerance for concrete tanks to sustain differential settlements / movements as compared to steel tanks. This damage state corresponds to a complete loss of the tank. - For open cut reservoirs, the amount of PGD needed to caused widespread damage to the roof structure is assumed to be 8 inches. This report does not provide fragilities for failure of embankment dams. - Damage to attached pipes to the tank due to PGDs would normally be captured in the analysis of the pipelines. Offsets of a few inches would likely damage attached pipes which do not have the capability to absorb any significant displacements; while this damage would put the tank out of service, it is relatively low cost to repair such damage to the pipes. ## 5.3 Analytical Fragility Curves Section 5.2 provides fragility curves which are based on the empirical performance of at grade steel tanks in prior earthquakes. These fragility curves may be appropriate for simplified loss estimation or large numbers of tanks. However, use of these empirical fragility curves to estimate the actual performance of a specific tank may often lead to inappropriate conclusions. In part, this is because the attributes of a specific tank may not match the "average" attributes of the many tanks in the empirical database. The fragility curves for a specific tank can be derived base on analysis. The general analytical approach to develop tank specific fragility curves is as follows: - 1. Perform a deterministic evaluation of the tank being considered. This procedure follows the normal building codes and standards used in design (AWWA D100, API 650, etc.), with the general exception that no energy absorption "Rw" factor is allowed (i.e., use $R_{\rm w}=1$). This evaluation will yield a number of possible damage states for the tank, such as: - Failure of the weld at the bottom of a steel tank - Yielding of the steel in hoop tension - Failure of the anchor bolts holding down the tank - Sliding of the tank - Breakage of the inlet-outlet pipe For each of these damage states, the deterministic analysis will provide a frequency and a spectral acceleration that is needed to get to the code-defined allowable stress limit: f_{ds} = fundamental frequency of the tank for the loading which leads to this damage state A_{ds} = code-based spectral acceleration needed to just reach this damage state. 2. It is usual that most building codes and standards imply a factor of safety between the code design level and the actual level of shaking needed, on average, to cause the damage state. This median spectral acceleration, Å ds, can be considered related to the code-based spectral acceleration as follows: $$\hat{A}_{ds} = F * A_{ds}$$ [eq 5-1] F = factor of safety For example, if a concrete shear wall is determined by code-based analysis to have a capacity A_{ds} , then \hat{A}_{ds} can be determined by increasing A_{ds} by a factor f_1 , because the code formula is a conservative approximation of test results, by a factor f_2 because actual concrete strengths usually exceed minimum strengths specified in the design documents, and by a factor f_3 because the detailing will result in a wall ductility μ . 3. The distribution of the capacity distribution for the various damage states can be described with a lognormal distribution, β . The value for β can be determined from past tests. Using the example in step 2 above, we can derive scatter from past test data for concrete shear strength, compressive strength and ductility, calling them β_1 , β_2 , and β_3 . The total β is then the square root of the sum of the squares of the individual β s. Randomness and uncertainty due to other factors (particularly the ground motions) can be added in a similar fashion. In general, the total factor of safety F is composed of: - A strength factor based on the variability in material strengths and workmanship. - An inelastic energy absorption factor related to the particular damage state, the behavior of the materials involved and the overall ductility of the structure. - Damping used in the code-based analysis (often 5%) versus that actually expected associated with the damage state (often higher than 5%, but sometimes lower for certain tank-specific damage states). - Modeling assumptions, for example equivalent elastic static lateral force method versus inelastic dynamic time history. Simplified modeling assumptions usually lead to conservative predictions of load, but with uncertainty introduced. - Model combination methods, for example single degree of freedom system versus combined multi-modal response. Often, attributing the entire mass of a structure into the fundamental mode will overpredict internal forces in the structure. - Soil-structure interaction and wave incoherence effects. The total F is a product of the above individual factors. Not all these factors affect every damage state for every structure. It should be noted that analytically derived damage algorithms described in Section 5.4 are based on an assumed duration of strong ground shaking of around 15 seconds to 20 seconds. This 15 to 20 second range is typical for tanks on rock or firm soil sites, subjected to crustal earthquakes of moderate magnitude (M 6 to M 7.5, typical for California). Damage states which are sensitive to repeated cyclic response can occur at lower accelerations in longer duration earthquakes. Some method to quantitatively include duration into loss estimates should be included for loss estimation efforts which are for either low magnitude earthquakes (M 6 or below) or very high magnitude earthquakes (M 7.6 or larger). ## 5.4 Representative Fragility Curves Representative fragility curves for 11 types of water distribution system tanks are described in this section. All tanks are assumed to have height to diameter ratios under 0.75. The larger volume water tanks (over 2,000,000 gallons) will usually have lower H/D ratios. The fragility curves in Tables 5-8 through 5-16 are based on average results of analytical calculation for a variety of tanks, supplemented by engineering judgment. This report does not provide detailed strength of mechanics calculations that were used to prepare these fragility curves; however, Appendix B.7 provides a sample calculation to compute the onset of elephant foot buckling for a typical anchored steel tank. The reader is cautioned that these curves should only be considered representative of fragilities for specific tanks, and should always be adjusted for tank-specific conditions. The reader is referred to Bandpadhyay et al [1993] and Kennedy and Kassawara [1989] for detailed methods for how to analyze tanks and calculate tank-specific fragilities. For specific tanks, it is recommended that the user develop tank-specific fragility curves. These will take into account tank specific features, such as height, diameter, wall thickness, strength
of materials, fill height, available freeboard, methods to attach pipes, type of foundation, type of roof, density of liquid (important for oil products), local soil conditions, etc. There is a wide range for possible combinations of these parameters. The representative fragility curves that follow use response spectral ordinates of 5% damped horizontal response spectra, at a particular impulsive mode frequency. This is considered a better indicator of seismic forces than PGA. Sloshing mode failure modes should be based on the response spectral ordinates of 0.5% damped horizontal response spectra, at a particular convective mode frequency. Fragilities which are based on both impulsive and convective modes (like overturning moment) are based on the impulsive mode frequency and spectral ordinate, can assume a ratio of convective mode to impulsive mode response spectral values for preliminary analyses. Each representative fragility curve provides the median spectral acceleration and the beta (lognormal standard deviation) that represents uncertainty only. Randomness in ground motions is not included in Tables 5-8 through 5-18; the end user must account for this randomness. If the user wishes to use a single beta to represent both uncertainty and randomness, then the beta (uncertainty) values in Tables 5-8 through 5-18 can be converted to a total beta as follows: $$\beta_{total} = \sqrt{\beta_u^2 + \beta_r^2}$$ [eq. 5-2] where β_r is typically around 0.40 for high magnitude crustal earthquakes in California, and perhaps as high as 0.60 for earthquakes affecting the Eastern United States; it is beyond the scope of this report to specify β_r in detail. - Table 5-8. Unanchored redwood tank (50,000 500,000 gallons) - Table 5-9. Unanchored post-tensioned circular concrete tank (1,000,000+ gallons) - Table 5-10. Unanchored steel tank with integral shell roof (100,000 2,000,000 gallons) - Table 5-11. Unanchored steel tank with wood roof (100,000 2,000,000 gallons) - Table 5-12. Anchored steel tank with integral steel roof (100,000 2,000,000 gallons) - Table 5-13. Unanchored steel tank with integral steel roof (2,000,000+ gallons) - Table 5-14. Anchored steel tank with wood roof (2,000,000+ gallons) - Table 5-15. Anchored reinforced (or prestressed) concrete tank (50,000 1,000,000 gallons) - Table 5-16. Elevated steel tank with no seismic design - Table 5-17. Elevated steel tank with nominal seismic design - Table 5-18. Roof over Open Cut reservoir The fragility curves in Tables 5-8 through 5-18 assume that the tank is full (filled to the overflow level) at the time of the earthquake. The following paragraphs provide notes as to the basis and intended usage of these fragility curves. Wood Tanks at Grade. Use Table 5-8. <u>Wood Tanks – Elevated</u>. There are few of these tanks in use today in major water systems. ATC-13 [ATC] and empirical data suggests that elevated tanks are more vulnerable than tanks at grade. Use Table 5-8 with medians reduced by 25%. <u>Steel Tanks at Grade – Unanchored</u>. Use Table 5-10 for smaller tanks (under 2,000,000 gallons). Use damage algorithm Table 5-13 for larger tanks (over 2,000,000 gallons). If the tank is known to have a wood roof, add damage state Table 5-11 (4) for smaller tanks, or Table 5-14 (2) for larger tanks (roof damage). If the tank does not have a wood roof, exclude these damage states. <u>Steel Tanks at Grade – Anchored.</u> Use Table 5-12 for smaller tanks (under 2,000,000 gallons). Use Table 5-14 for larger tanks (over 2,000,000 gallons). If the tank is known to have a wood roof, add damage state Table 5-11 (4) for smaller tanks, or T able 5-14 (2) for larger tanks (roof damage). If the tank does not have a wood roof, exclude these damage states. <u>Steel Tanks – Elevated</u>. ATC-13 and limited empirical data suggests that elevated tanks are more vulnerable than tanks at grade. The typical failure mode is collapse. There is insufficient empirical data to construct an empirical-based damage algorithm. The following is assumed: - The tanks are always designed for wind load, which can be approximated at about equivalent to a PGA of 0.03g. In Zone 3/4, the tanks have been originally designed elastically for a PGA of 0.15g. There should be essentially no failures at this level of shaking. - The median collapse fundamental mode (Table 5-16) Spectral Acceleration is 0.7g for tanks which have not been designed for earthquake loading. The median collapse fundamental mode Spectral Acceleration is 1.0g (Table 5-17) for tanks which have been designed for nominal (not site specific) earthquake loads in Zone 3/4. - The typical fundamental frequency of these tanks is 1 to 2 Hz (say 1.5 Hz). On rock sites, spectral acceleration at 1.5 Hz is about the same as the PGA. On soil sites, spectral acceleration at 1.5 Hz is about 2 times the PGA. - Assume with β of 0.3. This reflects uncertainty in the tank capacity. - For elevated tanks with no seismic design. Assume: - Median Acceleration to failure = 0.70g - Fundamental frequency = 1.5 Hz - Damage Factor = 100% - Functionality Factor = 0 (not functional) This damage algorithm translates to the following failure rates for elevated steel tanks on rock sites: - 50% of elevated tanks fail at PGA = 0.70g. - 16% of elevated tanks fail at PGA = 0.38g. - 2.3% of elevated tanks fail at PGA = 0.21g. - 0.13% of elevated tanks fail at PGA = 0.12g. The above failure rates would occur at half the PGAs for elevated tanks on soil sites. These damage algorithms appear reasonable given the limited empirical evidence available. Elevated tanks with nominal seismic design. Assume: - Median Acceleration to failure = 1.0g - Fundamental frequency = 1.5 Hz - Damage Factor = 100% - Functionality Factor = 0 (not functional) This damage algorithm translates to the following failure rates for elevated steel tanks on rock sites: - 50% of elevated tanks fail at PGA = 1.0g. - 16% of elevated tanks fail at PGA = 0.55. - 2.3% of elevated tanks fail at PGA = 0.30. - 0.13% of elevated tanks fail at PGA = 0.17. The above failure rates would occur at half the PGAs for elevated tanks on soil sites. These damage algorithms appear reasonable given the limited empirical evidence available. Elevated tanks with site specific seismic design should have less than a 2% chance of failure for the design basis event. No damage algorithm is provided for these types of tanks. #### To summarize: - Use Table 5-16 for elevated steel tanks with no seismic design. - Use Table 5-17 for elevated steel tanks with nominal seismic design. <u>Concrete Tanks At Grade - Unanchored</u>. Use Table 5-9 for unanchored prestressed concrete tanks at grade. For larger volume concrete tanks, use Table 5-9 without modification. <u>Concrete Tanks At Grade - Anchored</u>. Use Table 5-15 for anchored reinforced concrete tanks at grade. There is insufficient empirical evidence of how modern seismically designed prestressed concrete tanks have performed in earthquakes. Assume that they will perform as well as anchored reinforced concrete tanks, Table 5-15. For larger volume concrete tanks, use Table 5-15 without modification. Concrete Tanks – Elevated. The use of elevated reinforced concrete tanks in the United States is not a common practice. However, use of elevated reinforced concrete tanks is common outside the United States, and a large number of such tanks (over 100) have been exposed to moderate to strong ground shaking in recent earthquakes (Kocaeli Turkey 1999, Gujarat India 2001). While complete details of how these tanks were designed are not available, it is believed that they have been designed to seismic forces about equivalent to those specified in UBC (1994 version) for seismic zone 3 to 4. Observed performance of these tanks suggests that they undergo moderate damage (spalling of concrete columns at joints) at PGA levels about 0.2 to 0.3g, and have a small chance of collapse (under 5%) at PGA levels of about 0.4 to 0.5g. <u>Open Cut Reservoirs</u>. Damage to open cut reservoirs without roofs is generally limited to failure of embankment dams. Fragility curves for dams are not covered in this report. Damage to open cut reservoirs with roofs is dependent upon the type of roof. Most open cut reservoir roofs have been installed in the 1960s or earlier, and many of these are considered highly vulnerably to strong seismic forces. Although damage to these roofs should not impair reservoir performance (it will still hold water and it is assumed that falling debris will not clog the inlet/outlet pipes), it will affect water quality (debris in the water) and cause large financial losses (repairing the roofs can be very expensive). Use Table 5-18 for open cut reservoir roofs with no or little (under 0.10g equivalent static force) seismic design. Note that functional failure of the reservoir is dependent on failure of the embankment dams, which is not covered by Table 5-18. <u>Fiberglass Tanks</u>. Water utilities commonly use fiberglass tanks for storage of caustic materials at water treatment plants. Significant seismic weaknesses may be at the locations where the tanks are attached or anchored to foundations. This report provides no fragility data for such tanks. Seismic anchor systems for these tanks are warranted in many situations; new ones should be designed and existing ones should be verified by a licensed structural engineer. #### 5.4.1 Use of Fault Trees for Overall Tank Evaluation One method to determine whether a tank is in a particular damage state is by use of a fault tree. The calculation procedure to determine the functional status of a tank for a scenario earthquake is as follows: - First, determine the PGA, Response Spectra and PGD at the tank site. - Second, determine the functional status of each lowest level component item at the tank. A lowest level component item is one which is at the lowest level shown in the fault tree. Figure 5-1 shows an example for a steel tank
with 8 possible failure modes which can combine into one of three possible overall tank damage states. - The probability of failure of each lowest level component should be determined. For example, assume that a component has a single damage state, namely: "Roof damaged, median A = 0.50g, beta = 0.20. Also assume that there is a Spectral Acceleration at this site at the fundamental frequency of this component of 0.41g. Then, by assuming a lognormal distribution for the fragility curve, then the probability of failure of this component is: - $P_f(SA = 0.41) = A e^{-x \beta}$, - 0.41 = 0.50 e x (0.20) $$x = ln(\frac{0.41}{0.50}) / (0.20) = -1.00$$ - x = -1.00, or one standard deviation below the median. Using standard normal tables, we find that 1.00 standard deviation below the median means that there is a 16% chance that the actual components capacity is less than 0.41g. - Once the component-level failure probabilities are determined for each of the eight failure modes, the logic of the fault trees (three in Figure 5-1) is calculated to determine the probability of failure of the three highest level events (damage staets 2, 3 and 4 in Figure 5-1). The method to handle fault tree logic is as follows: - The event above an And Gate is computed as follows when there are n components below the And Gate: $$P_{f \text{ Event above And gate}} = \prod_{i=1}^{n} [P_{f}]$$ Components below And gate • The event above an Or Gate is computed as follows when there are n components below the Or Gate: $$P_{f \text{ Event above Or gate}} = 1 - \prod_{i=1}^{n} [1-P_f]$$ Components below Or gate • Following this procedure, one can obtain the probability of each of the top events occurring, namely the probability that the tank is in each of the three damage states. Say for the example in Figure 5-1, the results are as follows: Probability of being in Damage State 2 = 50%, Damage State 3 = 10%, Damage State 4 = 30%. Note that the lowest level events may not be mutually exclusive. For example, "Wall Uplift with Leak" implies that "Anchor Bolts Damaged" also occurs. The manner in which the fault trees are constructed should reflect the manner in which the analyst wishes to use the results: a different fault tree might be used for estimating the total repair cost for the tank as compared as to evaluating whether or not the tank remains functional immediately after the earthquake. ### 5.5 References API, American Petroleum Institute, Welded Steel Tanks for Oil Storage, API Standard 650, Washington, DC. AWWA, American Water Works Association, Welded Steel Tanks for Water Storage, AWWA Standard D100, Denver, Colorado. ATC, Earthquake Damage Evaluation Data for California, ATC 13, Applied Technology Council, 1985. Ballantyne, D., Crouse, C., Reliability and Restoration of Water Supply Systems for Fire Suppression and Drinking Following Earthquakes, prepared for National Institute of Standards and Technology, NIST GCR 97-730, 1997. Bandyopadhyay, K., Cornell, A., Costantino, C., Kennedy, R.P., Miller, C. and Veletsos, A., Seismic Design and Evaluation Guidelines for The Department of energy high-Level Waste Storage Tanks and Appurtenances, Brookhaven National Laboratory, BNL 52361, January, 1993. Brown, K., Rugar, P., Davis, C., Rulla, T., Seismic Performance of Los Angeles Water Tanks, Lifeline Earthquake Engineering, *in* Proceedings, 4th U.S. Conference, ASCE, TCLEE Monograph No. 6, San Francisco, 1995. Cooper, T. W., A Study of the Performance of Petroleum Storage Tanks During Earthquakes, 1933 – 1995, prepared for the National Institute of Standards and Technology, Gaithersburg, MD, June, 1997. EERI, <u>Imperial County, California Earthquake Reconnaissance Report</u>, Earthquake Engineering Research Institute, G, Brandow Coordinator, D. Leeds, Editor, February, 1980. EERI, <u>Coalinga, California Earthquake of May 2, 1983 Reconnaissance Report,</u> Earthquake Engineering Research Institute, R. Scholl, J. Stratta, Editors, January, 1984. EERI, Morgan Hill, California Earthquake of April 24, 1984, Earthquake Engineering Research Institute, Vol. 1, No. 3, May, 1985. EERI, <u>Loma Prieta Reconnaissance Report</u>, Earthquake Spectra, Earthquake Engineering Research Institute, Supplement to Vol. 6, May 1990. EERI, <u>Costa Rica Earthquake Reconnaissance Report</u>, Earthquake Spectra, Earthquake Engineering Research Institute, Supplement B to Volume 7, October 1991. EERI, Northridge Earthquake Reconnaissance Report, Earthquake Spectra, Earthquake Engineering Research Institute, Supplement C to Volume 11, Vol. 1. April 1995. Eidinger, J. and Avila, E. eds., *Seismic Design and Retrofit of Water Transmission Facilities*, TCLEE Monograph No. 15, ASCE, January 1999. Hanson, R., The Great Alaska Earthquake of 1964, National Academy of Sciences, 1973. Haroun, M., Behavior of Unanchored Oil Storage Tanks: Imperial Valley Earthquake, Journal of Technical Topics in Civil Engineering, ASCE, Vol. 109, No. 1, April, 1983. Haroun, M. A., Implications of Recent Nonlinear Analyses on Seismic Standards of Liquid Storage Tanks, *In* Proceedings, 5th US Conference on Lifeline Earthquake Engineering, TCLEE Monograph No. 16, ASCE, Seattle, August, 1999. Hashimoto, P.S., and Tiong, L.W., "Earthquake Experience Data on Anchored Ground Mounted Vertical Storage Tanks", EPRI Report NP-6276, March, 1989. HAZUS, Earthquake Loss Estimation Methodology, National Institute of Building Sciences, prepared by Risk Management Solutions, Menlo Park, CA, 1997. Kennedy, R. P. and Kassawara, R. P., "Seismic Evaluation of Large Flat-Bottomed Tanks", Second Symposium on Current Issues Related to Nuclear Power Plant Structures, Equipment, and Piping with Emphasis on Resolution of Seismic Issues in Low-Seismicity Regions, EPRI NP-6437-D, May, 1989. NZNSEE, <u>Seismic Design of Storage Tanks</u>, Recommendations of a Study Group of the New Zealand National Society for Earthquake Engineering, December, 1986. O'Rourke, M. and So, P., Seismic Behavior of On-Grade Steel Tanks; Fragility Curves, *in* Optimizing Post-Earthquake Lifeline System Reliability, ed. W. Elliott and P. McDonough, Technical Council on Lifeline Earthquake Engineering, Monograph No. 16, ASCE, August, 1999. Wald, J., Quitoriano, V., Heaton, T., Kanamori, H., and Scrivner, C., TRINET Shakemaps: Rapid Generation of Peak Ground Motion and Intensity Maps for Earthquakes in Southern California, Earthquake Spectra, October 1998. | Table 5-8. UNANCHORED REDWOOD TANK. 50,000 - 500,000 Gallons | | | | | | | | | | | |--|---|--------|----------|---------|-------|----------------|------|---------------|-------|--| | | | | Groun | d Shaki | ng | Ground Failure | | | | | | Hazard | Damage State | Damage | Median A | Beta | Freq. | Median PGD | Beta | Functionality | Logic | | | | | Factor | (g) | | (Hz) | (inch) | | Code | Code | | | | | | | | | | | | | | | Ground Shaking | Tank slides breaks inlet line. | 0.50 | 1.00 | 0.50 | 7 | | | 0 | 1 | | | Ground Shaking | Wall-to-floor connection fails due to uplift. | 0.15 | 2.25 | 0.50 | 7 | | | 0 | 2 | | | Ground Shaking | Bars stretch, tank leaks. | 0.15 | 2.25 | 0.50 | 7 | | | 1 | 3 | | | Ground Shaking | Tank roof damage. | 0.25 | 2.25 | 0.50 | 7 | | | 1 | 4 | | | Ground Failure | PGD Failure | 1.00 | | | | 36 | 0.50 | 0 | 5 | | Notes: (a) Damage Factor is ratio of repair cost of subcomponent / replacement value of component. - (b) Functionality Code: 0 means not functional; 1 means functional. - (c) Logic Codes: For each Logic Code, only one Damage State can occur. For each Logic Code for which demand exceeds capacity, damage state with largest Damage Factor is selected. | | | | Ground Shaking | | | Ground Failure |) | | | |----------------|--|------------------|-----------------|------|---------------|----------------------|------|-----------------------|---------------| | Hazard | Damage State | Damage
Factor | Median A
(g) | Beta | Freq.
(Hz) | Median PGD
(inch) | Beta | Functionality
Code | Logic
Code | | | | | | | | | | | | | Ground Shaking | Uplift of Wall. Slight Leakage | 0.015 | 2.00 | 0.45 | 7 | | | 1 | 1 | | Ground Shaking | Cracking of Tank Wall. Loss of Contents | 0.100 | 1.05 | 0.45 | 7 | | | 0 | 2 | | Ground Shaking | Sliding of tank wall. Slight Leakage | 0.015 | 0.25 | 0.45 | 7 | | | 1 | 3 | | Ground Shaking | Major hoop over-stress. Loss of Contents | 0.030 | 0.75 | 0.45 | 7 | | | 0 | 4 | | Ground Shaking | Slight hoop over-stress. Slight Leakage | 0.015 | 0.45 | 0.45 | 7 | | | 1 | 4 | | Ground Shaking | Roof Failure | 0.040 | 2.60 | 0.45 | 7 | | | 1 | 5 | | Ground Failure | PGD failure | 1.000 | | | | 24 | 0.50 | 0 | 6 | - (b) Functionality Code: 0 means not functional; 1 means functional. - (c) Logic Codes: For each Logic Code, only one Damage State can occur. For each Logic Code for which demand exceeds capacity, damage state with largest Damage Factor is selected. | | | | Ground | d Shaki | ng | Ground Failure | | | | |----------------|--|--------|----------|---------|-------|----------------|------|---------------|-------| | Hazard | Damage State | Damage | Median A | Beta | Freq. | Median PGD | Beta | Functionality | Logic | | | | Factor | (g) | | (Hz) | (inch) | | Code | Code | | | | | | | | | | | | | Ground Shaking | Weld failure at base. Loss of contents | 0.025 | 3.00 | 0.50 | 8 | | | 0 | 1 | | Ground Shaking | Pipe damage. Loss of contents | 0.007 | 1.80 | 0.50 | 8 | | | 0 | 2 | | Ground Shaking | Pipe damage. Slight Leakage | 0.003 | 1.00 | 0.50 | 8 | | | 1 | 2 | | Ground Shaking | Elephant foot buckle with loss of contents | 1.00 | 1.00 | 0.50 | 8 | | | 0 | 3 | | Ground Shaking | Elephant foot buckle with no leak | 0.50 | 0.75 | 0.50 | 8 | | | 1 | 3 | | Ground Failure | PGD Failure | 1.00 | | | | 36 | 0.50 | 0 | 4 | Notes: (a) Damage Factor is
ratio of repair cost of subcomponent / replacement value of component. - (b) Functionality Code: 0 means not functional; 1 means functional. - (c) Logic Codes: For each Logic Code, only one Damage State can occur. For each Logic Code for which demand exceeds capacity, damage state with largest Damage Factor is selected. Table 5-11. STEEL TANK--Unanchored; Wood Roof; (0.1 - 2 MG) | | | | Ground | d Shaki | ng | Ground Failure | | | | |----------------|--|--------|----------|---------|-------|----------------|------|---------------|-------| | Hazard | Damage State | Damage | Median A | Beta | Freq. | Median PGD | Beta | Functionality | Logic | | | | Factor | (g) | | (Hz) | (inch) | | Code | Code | | | | | | | | | | | | | Ground Shaking | Weld failure at base. Loss of contents | 0.025 | 3.00 | 0.50 | 8 | | | 0 | 1 | | Ground Shaking | Pipe damage/sliding. Loss of contents | 0.007 | 1.80 | 0.50 | 8 | | | 0 | 2 | | Ground Shaking | Pipe damage/uplift. Slight leakage | 0.003 | 1.00 | 0.50 | 8 | | | 1 | 2 | | Ground Shaking | Roof damage / sloshing | 0.20 | 0.50 | 0.55 | 0.28 | | | 1 | 3 | | Ground Shaking | Elephant foot buckle with loss of contents | 1.00 | 1.00 | 0.50 | 8 | | | 0 | 4 | | Ground Shaking | Elephant foot buckle with no leak | 0.50 | 0.75 | 0.50 | 8 | | | 1 | 4 | | Ground Failure | PGD Failure | 1.00 | | | | 36 | 0.50 | 0 | 5 | - (b) Functionality Code: 0 means not functional; 1 means functional. - (c) Logic Codes: For each Logic Code, only one Damage State can occur. For each Logic Code for which demand exceeds capacity, damage state with largest Damage Factor is selected. | 1able 5-12. 51 | EEL TANKAnchored; Steel Roof; (0.1 - 2 | | Ground | d Shaki | na | Ground Failure | <u>.</u> | | | |-----------------------|--|--------|--------|---------|-------|----------------|----------|---------------|-------| | Hazard | Damage State | Damage | | | Freq. | Median PGD | Beta | Functionality | Logic | | | 3 | Factor | (g) | | (Hz) | (inch) | | Code | Code | | | | | | | | | | | | | Ground Shaking | Weld failure at base. Loss of contents | 0.03 | 5.70 | 0.50 | 7 | | | 0 | 1 | | Ground Shaking | Pipe damage/sliding. Loss of contents | 0.04 | 4.00 | 0.50 | 7 | | | 0 | 2 | | Ground Shaking | Pipe damage/uplift. Slight leak. | 0.02 | 3.60 | 0.50 | 7 | | | 1 | 2 | | Ground Shaking | Anchor damage, no leak | 0.003 | 3.10 | 0.50 | 7 | | | 1 | 2 | 1.00 0.50 1.00 Notes: (a) Damage Factor is ratio of repair cost of subcomponent / replacement value of component. - (b) Functionality Code: 0 means not functional; 1 means functional. - (c) Logic Codes: For each Logic Code, only one Damage State can occur. For each Logic Code for which demand exceeds capacity, damage state with largest Damage Factor is selected. 5.55 3.70 0.50 0.50 7 36 0.50 3 3 | Table 5-13. STEEL TANK | Unanchored; St | teel Roof; (2 + N | IG) | |------------------------|----------------|-------------------|-----| |------------------------|----------------|-------------------|-----| Ground Shaking Elephant foot buckle with loss of contents Ground Shaking Elephant foot buckle with no leak Ground Failure PGD Failure. | | | | Ground | d Shaki | ng | Ground Failure | | | | |----------------|--|--------|----------|---------|-------|----------------|------|---------------|-------| | Hazard | Damage State | Damage | Median A | Beta | Freq. | Median PGD | Beta | Functionality | Logic | | | | Factor | (g) | | (Hz) | (inch) | | Code | Code | | | | | | | | | | | | | Ground Shaking | Weld failure at base. Loss of contents | 0.006 | 2.10 | 0.50 | 5 | | | 0 | 1 | | Ground Shaking | Pipe damage/uplift. Loss of contents | 0.002 | 1.40 | 0.50 | 5 | | | 0 | 2 | | Ground Shaking | Pipe damage/uplift. Slight leak. | 0.0006 | 1.20 | 0.50 | 5 | | | 1 | 2 | | Ground Shaking | Elephant foot buckle with loss of contents | 1.00 | 0.75 | 0.50 | 5 | | | 0 | 3 | | Ground Shaking | Elephant foot buckle without leak. | 0.50 | 0.50 | 0.50 | 5 | | | 1 | 3 | | Ground Shaking | Hoop overstress | 0.04 | 0.95 | 0.50 | 5 | | | 1 | 4 | | Ground Failure | PGD Failure. | 1.00 | | | | 36 | 0.50 | 0 | 5 | - (b) Functionality Code: 0 means not functional; 1 means functional. - (c) Logic Codes: For each Logic Code, only one Damage State can occur. For each Logic Code for which demand exceeds capacity, damage state with largest Damage Factor is selected. | Table 5-14. STEEL TANKAnchored; Wood Roof; (2 + MG) | | | | | | | | | | | |---|---|--------|----------|---------|-------|----------------|------|---------------|-------|--| | | | | Groun | d Shaki | ng | Ground Failure | | | | | | Hazard | Damage State | Damage | Median A | Beta | Freq. | Median PGD | Beta | Functionality | Logic | | | | | Factor | (g) | | (Hz) | (inch) | | Code | Code | | | | | | | | | | | | | | | Ground Shaking | Pipe damage / uplift. Loss of contents | 0.007 | 3.20 | 0.50 | 5 | | | 0 | 1 | | | Ground Shaking | Roof Damage. | 0.08 | 0.20 | 0.50 | 0.13 | | | 1 | 2 | | | Ground Shaking | Hoop overstress | 0.11 | 4.10 | 0.50 | 5 | | | 1 | 3 | | | Ground Shaking | Anchor damage, weld failure at base. Loss of contents | 0.002 | 3.60 | 0.50 | 5 | | | 0 | 4 | | | Ground Failure | PGD Failure. | 1.00 | | | | 36 | 0.50 | 0 | 5 | | Notes: (a) Damage Factor is ratio of repair cost of subcomponent / replacement value of component. - (b) Functionality Code: 0 means not functional; 1 means functional. - (c) Logic Codes: For each Logic Code, only one Damage State can occur. For each Logic Code for which demand exceeds capacity, damage state with largest Damage Factor is selected. | Table 5-15. CONCRETE TANKReinforced / Prestressed Concrete, Anchored, (0.05 - 1 MG) | | | | | | | | | | | |---|-------------------------|--------|----------|---------|-------|----------------|------|---------------|-------|--| | | | | Groun | d Shaki | ng | Ground Failure | | | | | | Hazard | Damage State | Damage | Median A | Beta | Freq. | Median PGD | Beta | Functionality | Logic | | | | | Factor | (g) | | (Hz) | (inch) | | Code | Code | | | | | | | | | | | | | | | Ground Shaking | Uplift - Crush Concrete | 0.10 | 1.30 | 0.50 | 9 | | | 0 | 1 | | | Ground Shaking | Sliding | 0.03 | 1.10 | 0.50 | 9 | | | 0 | 2 | | | Ground Shaking | Shearing of Tank Wall | 0.03 | 1.60 | 0.50 | 9 | | | 0 | 3 | | | Ground Shaking | Hoop Overstress | 0.03 | 4.10 | 0.50 | 9 | | | 1 | 4 | | | Ground Failure | PGD Failure. | 0.75 | | | | 24 | 0.50 | 0 | 5 | | - (b) Functionality Code: 0 means not functional; 1 means functional. - (c) Logic Codes: For each Logic Code, only one Damage State can occur. For each Logic Code for which demand exceeds capacity, damage state with largest Damage Factor is selected. | Table 5-16. ELE | Table 5-16. ELEVATED STEEL TANK - Non Seismic Design | | | | | | | | | | | |-----------------|---|----------|---------------|---------|---------|----------------|------|---------------|-------|--|--| | | | | Groun | d Shaki | ng | Ground Failure | | | | | | | Hazard | Damage State | Damage | Median A | Beta | Freq. | Median PGD | Beta | Functionality | Logic | | | | | | Factor | (g) | | (Hz) | (inch) | | Code | Code | | | | | | | | | | | | | | | | | Ground Shaking | Collapse | 1.00 | 0.70 | 0.55 | 1.5 | | | 0 | 1 | | | | Ground Failure | PGD Failure. | 1.00 | | | | 24 | 0.50 | 0 | 2 | | | | Notes: | (a) Damage Factor is ratio of repair cost of | subcompo | onent / repla | acemen | t value | of component. | | | | | | | | (b) Functionality Code: 0 means not functional; 1 means functional. | | | | | | | | | | | | | (c) Logic Codes: For each Logic Code, only one Damage State can occur. For each Logic Code for which demand exceeds | | | | | | | | | | | | | capacity, damage state with largest Da | mage Fac | tor is select | ed. | | | | | | | | | Table 5-17. ELEVATED STEEL TANK - Nominal Seismic Design | | | | | | | | | | |--|--|------------|--------------|---------|-------|----------------|------|---------------|-------| | | | | Groun | d Shaki | ng | Ground Failure |) | | | | Hazard | Damage State | Damage | Median A | Beta | Freq. | Median PGD | Beta | Functionality | Logic | | | | Factor | (g) | | (Hz) | (inch) | | Code | Code | | | | | | | | | | | | | Ground Shaking | Collapse | 1.00 | 1.00 | 0.55 | 1.5 | | | 0 | 1 | | Ground Failure | PGD Failure. | 1.00 | | | | 24 | 0.50 | 0 | 2 | | Notes: (a) Damage Factor is ratio of repair cost of subcomponent / replacement value of component. | | | | | | | | | | | | (b) Functionality Code: 0 means not function | nal; 1 mea | ans function | al. | | | | | | | Table 5-18. OPEN CUT RESERVOIR ROOF | | | | | | | | | | |-------------------------------------|---|----------|---------------|---------|-------|------------|--------|---------------|-------| | | | | Ground | d Shaki | ng | Ground F | ailure | | | | Hazard | Damage State | Damage | Median A | Beta | Freq. | Median PGD | Beta | Functionality | Logic | | | | Factor | (g) | | (Hz) | (inch) | | Code | Code | | | | | | | | | | | | | Ground Shaking | Major Damage to Roof | 0.15 | 1.00 | 0.55 | 4 | | | 1 | 1 | | Ground Shaking | Minor Damage to Roof | 0.05 | 0.60 | 0.55 | 4 | | | 1 | 2 | | Ground Failure | Localized Damage to Roof | 0.05 | | | | 8 | 0.50 | 1 | 3 | | Notes: | Notes: (a) Damage Factor is ratio of repair cost of subcomponent / replacement value of component. | | | | | | | | | | | (b) Functionality
Code: 0 means not functional; 1 means functional. | | | | | | | | | | | (c) Logic Codes: For each Logic Code, only one Damage State can occur. For each Logic Code for which demand exceeds | | | | | | | | | | | capacity, damage state with largest Da | mage Fac | tor is select | ed. | | | | | | Example (Will vary based on failure modes considered for the specific tank) Damage State 2: Tank damaged, minor repairs, remains in service Damage State 3: Tank damaged, major repairs, remains in service Damage State 4: Tank damaged, major repairs, out of service Figure 5-1. Example Fault Trees for Evaluation of An Anchored Steel Tank # 6.0 Water Tunnel Fragility Formulations Section 6 of the report provides fragility curves for tunnels in response to strong ground shaking. In some instances, damage to tunnels due to landslides and surface faulting is discussed; but the development of fragility curves for these damage modes are considered best done by tunnel specific calculations, which is outside the scope of this report. ## 6.1 Factors That Cause Damage to Tunnels Water tunnels may be damaged in earthquakes due to ground shaking, landslide or fault offset. For this report, it is assumed that water tunnels are transporting water at near atmospheric pressures; i.e., the tunnels are not designed to retain high internal pressures. Ground shaking will induced stresses in the liner system of tunnels. If the level of shaking is sufficiently high, and depending on the type and quality of the liner system, the liner can become cracked. With sufficient cracking, some parts of the liner can collapse into the tunnel. For unlined tunnels, the ground shaking can cause similar failure of the native materials. For water tunnels, the impact of liner failure may or may not be immediate. Small cracks in liners (minor damage) will not generally directly impact the flow of water through the tunnel, although there may be some minor increases in head loss. Over time, small cracks will allow water from the tunnel to enter the native materials behind the liner, which could cause erosion of the materials, which ultimately could lead to more damage to the liner. For this reason, even with minor damage, water utilities will often take the tunnel out of service and make repairs to the liner. Large cracks in liners (moderate damage) could lead to some immediate impacts to the tunnel. Large drop outs of the liner into the tunnel could lead to a partial blockage of water flow, or carrying of liner debris (or native material debris) in the water, which could impact downstream water quality or damage in-line equipment like pumps. A tunnel with moderate damage might be operable for days or even months following the earthquake, but lack of repair to moderate damage could allow the damage to progress to major failure of the tunnel over time. Major damage to liner systems (heavy damage) could lead to an immediate stop of all or almost all flow of water through the tunnel. For the most part, the factors which lead to the major damage state are fault offset through the tunnel itself, or landslide at the tunnel portals. It is beyond the scope of this report to provide fragility of tunnels due to landslide or fault offset. However, Appendix C provides some data on these failure modes. ## 6.2 Empirical Tunnel Dataset For this report, we have compiled a database of 217 bored tunnels that have experienced strong ground motions in prior earthquakes. The complete database is provided in Table C-2. It is composed of 204 entries based on work by Power et al [1998], supplemented by case history data based on Asakura and Sato [1998]. The database is described in detail in Appendix C. Table 6-1 summarizes the performance of the first 204 entries from Table C-2. This includes a total of 204 observations from moderate-to-large magnitude earthquakes (magnitude range $M_{\rm w}$ 6.6 to 8.4). Of these 204 cases, 97 are from the 1995 Kobe, Japan earthquake, for which a detailed compilation of tunnel performance data was made by the Japanese Geotechnical Engineering Association [1996]. The next largest contributors to the database are the 1994 Northridge and 1989 Loma Prieta earthquakes, with 31 and 22 cases, respectively. The database includes tunnels built for various functions (i.e., highway, transit, railroad, water supply, and communications). Most of the observations are for railroad and water supply tunnels and most data for highway tunnels are from the 1995 Kobe earthquake. | Earthquake | $M_{ m w}$ | Unknown
Liner | Unlined | Timber or
Masonry
Liner | Concrete
Liner | Reinf. Concrete or Steel pipe Liner | Total | |-----------------------------------|------------|------------------|---------|-------------------------------|-------------------|-------------------------------------|-------| | 1906 San Francisco,
California | 7.8 | - | 1 | 7 | - | - | 8 | | 1923 Kanto, Japan | 7.9 | - | 7 | 4 | 2 | - | 13 | | 1952 Kern County,
California | 7.4 | - | 4 | - | - | - | 4 | | 1964 Alaska | 8.4 | - | 8 | - | - | - | 8 | | 1971 San Fernando,
California | 6.6 | - | 8 | - | - | 1 | 9 | | 1989 Loma Prieta,
California | 7.1 | 3 | = | 2 | 11 | 6 | 22 | | 1992 Petrolia,
California | 6.9 | - | - | - | 11 | - | 11 | | 1993 Hokkaido,
Japan | 7.8 | - | - | - | - | 1 | 1 | | 1994 Northridge,
California | 6.7 | 6 | - | - | 5 | 20 | 31 | | 1995 Kobe, Japan | 6.9 | 3 | - | 1 | 87 | 6 | 97 | | 1992 Petrolia,
California | | | | | | Total = | 204 | Table 6-1. Summary of Earthquakes and Lining / Support Systems of the Bored Tunnels in the Database in Table C-2 [after Power et al, 1998] ### 6.3 Tunnel Fragility Curves This database in Table C-2 was analyzed to determine the percentage of tunnels of a given class of construction experiencing defined damage states during different levels of shaking. Table 6-2 provides a breakdown of the tunnels in the database. For classifying the liner type for tunnels with multiple types of liners, the tunnel was classified according to the "best" type of liner system anywhere along the length of the tunnel. The four damage states are: DS=1 (none); DS=2 (slight); DS=3 (moderate); DS=4 (heavy). | PGA (g) | All
Tunnels | DS = 1 | DS = 2 | DS = 3 | DS = 4 | |---------|----------------|--------|--------|--------|--------| | 0.07 | 30 | 30 | 0 | 0 | 0 | | 0.14 | 19 | 18 | 1 | 0 | 0 | | 0.25 | 22 | 19 | 2 | 0 | 1 | | 0.37 | 15 | 14 | 0 | 0 | 1 | | 0.45 | 44 | 36 | 6 | 2 | 0 | | 0.57 | 66 | 44 | 12 | 9 | 1 | | 0.67 | 19 | 3 | 7 | 8 | 1 | | 0.73 | 2 | 0 | 0 | 2 | 0 | | Total | 217 | 164 | 28 | 21 | 4 | Table 6-2. Statistics for All Bored Tunnels in Table C-2 Table 6-3 presents the computed fragilities for bored tunnels based on the data in Table 6-2 (see also Appendix C for further breakdown of the data). | DS | A, g | Beta | |------|-------|------|---------|------|--------|------|---------|--------|---------|------| | DS≥2 | 0.60 | 0.11 | 0.33 | 0.21 | 0.43 | 0.03 | 0.61 | 0.10 | 0.61 | 0.27 | | DS≥3 | 0.65 | 0.12 | 0.55 | 0.39 | 0.57 | 0.01 | 0.67 | 0.11 | 0.82 | 0.34 | | DS=4 | | | | | | | | | | | | | All | | Unlined | d | Timber | , | Unreint | forced | Reinfor | rced | | | | | | | Mason | ry, | Concre | te | Concre | te, | | | | | | | Brick | | | | Steel | | | | N=217 | | N=28 | | N=14 | | N=125 | | N = 38 | | Table 6-3. Fragility Curves, Tunnels, As a Function of Liner System The fragility curves developed by regression analysis are considered to be a better way to describe the entire dataset for use in programs like HAZUS, in that the fragility represents reaching *or exceeding* a particular damage state. The fragilities in Table 6-3 are described in terms of the median PGA to reach (or exceed) a particular damage state, and the lognormal standard deviation of the fragility (beta). Since essentially all PGA values in the statistics have been back-calculated at the tunnel location using attenuation models, the beta value represents uncertainty in the ground motion and in the tunnel performance. Table 6-4 compares the statistics for the complete 217 bored tunnel database (Table 6-1) with the statistics from prior studies [HAZUS 1997] for comparable tunnels. | Tunnel Type / Damage State | 217 Tunnels
Median - PGA | HAZUS
Median - PGA | |---|-----------------------------|-----------------------| | Good Quality (Reinforced Concrete / Steel) | | | | Moderate Damage | 0.82 g | 0.8 g | | Minor Damage | 0.61 g | 0.6 g | | Poor to Average Quality
(Unreinforced Concrete,
Timber, Masonry, Unlined) | | | | Moderate Damage | 0.55 to 0.67 g | 0.7 g | | Minor Damage | 0.33 to 0.61 g | 0.5 g | Table 6-4. Comparison of Bored Tunnel Fragility Curves The comparisons in Table 6-4 suggest the following: - For bored tunnels with reinforced concrete or steel liners. The database shows a median of 0.61g for the minor damage state. The corresponding HAZUS value is 0.6g, which was based on engineering judgment. - For bored tunnels with unreinforced concrete, timber or masonry liners, or unlined. The database shows a median of between 0.33 and 0.61g for the minor damage state. The corresponding HAZUS value is 0.5g, which was based on engineering judgment. The database shows a median of 0.55 to 0.67 for the moderate damage state. The corresponding HAZUS value is 0.7g, which was based on engineering judgment. This would suggest that it is appropriate to slightly modify and lower the HAZUS median PGA value for the minor and moderate damage states. The tunnel damage data in Tables C-3 and C-5 could not be directly included with the complete database (Table C-2) due to many missing attributes. The information in Table C-3 could be refined in future studies into a format more compatible with Table C-2, to allow statistical analysis. The data in Table C-5 is focused only on the moderate to heavy damage states, and the following observations are made: - For the Japanese
earthquake data tabulated in Table C-5, 16 of the case histories are from the 1923 Kanto earthquake. The data were compared with the 13 case histories summarized by Power et al. [1998] for the 1923 Kanto earthquake in Table C-2. The compilation of tunnel damage reported in Table C-5 is similar but not the same as those in Table C-2; however, the net effect would not significantly change the number of tunnels experiencing moderate to heavy damage during this earthquake. - For the other 18 case histories of seismic tunnel performance in Japan tabulated in Table C-5, most of the cases of moderate to heavy damage seem to be, or may be, associated with landsliding, faulting, other forms of ground failure, or with tunnels under construction at the time of the earthquake. This is noted in Table C-5. For most other tunnels in these Japanese earthquakes, damage was apparently slight or none. The tunnels in Turkey that collapsed (heavy damage state) due to the Duzce 1999 earthquake were under construction and thus should not be included in fragility assessments for completed tunnels. Given the analysis of the all the information available about tunnels that have suffered the complete damage state, the following observations are made: - There are 4 such tunnels out of 217 tunnels in Table C-2 (these are denoted with Damage Mode = 4). Of these 4, an argument can 3 of these tunnels reached the "heavy" damage state was due to landslide or surface faulting, coupled with poor quality construction and poor geologic conditions. - There is 1 highway tunnel (entry 33 in Table C3-5) that reached the heavy damage state (excluding the 1923 Kanto earthquake), for a location in the main liner section sufficiently away from the portal. This tunnel was located 26 km from the epicenter of the magnitude 6.8 Noto offshore earthquake. It was a 76-m-long and 6-m wide road tunnel. About 16 meters of the liner collapsed in the center of the tunnel; the tunnel was forced out of service. Kunita et al report the following reasons for the liner collapse: - The ground consisted of alternating layers of soft tuff and mudstone and was subject to loosening. - The loosened areas around the tunnels had expanded, as ground deterioration progressed over a long period of time under the influence of weathering and ground water (31 years between construction and the earthquake). Voids already existing behind the concrete lining and in the surrounding ground. - Loosened areas around new openings created by falling and around soft areas had expanded under the influence of the earthquake. - The earthquake-induced impulsive earth pressures and asymmetrical pressures on the concrete lining caused the collapse of the arch of the concrete lining and of the ground directly above the arch. Given the available information, it would appear reasonable to make the following statements about the potential for tunnel collapse due to ground shaking: - There have been no such failures to well constructed tunnels in good ground conditions. - There have been a few (perhaps 1 to 4 or so) such failures in tunnels with either unreinforced concrete, timber or masonry liners in poor ground conditions. High levels of PGA have not been attributed with such failures. For purposes of establishing a fragility level for this damage state, it is assumed that 1 in 100 tunnels with these attributes will experience such failure, at PGA levels of about 0.35g. Allowing a beta of 0.5, then the back-calculated median PGA is 1.12g. Using this description of the fragility, one would predict a 17% chance of tunnel collapse at a PGA = 0.7g, for similar conditions. Using this fragility curve for prediction of the heavy damage state would be useful for preliminary loss estimation purposes only. Using the above findings as a guide, judgments were made regarding median values of PGA at ground surface (at outcropping rock) for the damage categories of slight, moderate and heavy damage states. Slight damage includes minor cracking and spalling and other minor distress to tunnel liners. Moderate damage ranges from major cracking and spalling and rock falls. Heavy damage includes collapse of the liner (or surrounding soils) such that the tunnel is choked off either immediately or within a few days after he main shock. These assessments are made for tunnel categories of: (1) tunnels in rock for (a) poor to average construction and conditions and (b) good construction and conditions; and (2) tunnels in soil for (a) poor to average construction and conditions and (b) good construction and conditions. The characteristics of tunnels and geologic conditions comprising poor to average construction and conditions and good construction and conditions are listed below. Rock Tunnels with poor to average construction and conditions. These are tunnels in average or poor rock, either unsupported, masonry or timber liners, or unreinforced concrete with frequent voids behind lining and/or weak concrete. <u>Rock Tunnels with good construction and conditions</u>. These are any tunnel in very sound rock; tunnels designed for geologic conditions e.g. special support such as rock bolts or stronger liners in weak zones; unreinforced strong concrete liners with contact grouting to assure continuous contact with rock, average rock; or tunnels with reinforced concrete or steel liners with contact grouting. Alluvial (Soil) and Cut & Cover Tunnels with poor to average construction. These may be tunnels which are bored or cut and cover box type tunnels. These include tunnels with masonry, timber or unreinforced concrete liners, or any liner in poor contact with the soil. These also include cut and cover box tunnels not designed for racking mode of deformation. Alluvial (Soil) and Cut & Cover Tunnels with good construction. These are tunnels designed for seismic loading including racking mode of deformation for cut and cover box tunnels. These also include tunnels with reinforced strong concrete or steel liners in bored tunnels in good contact with soil. The assessed values of PGA for these damage states and tunnel categories are summarized in Table 6-5. | Type of Tunnel (see text for detailed description) | Slight
Damage
State | Moderate
Damage
State | Heavy
Damage
State | |---|---------------------------|-----------------------------|--------------------------| | | Median
PGA (g) | Median
PGA (g) | Median
PGA (g) | | Rock Tunnel – poor to average construction and conditions | 0.35 | 0.55 | 1.10 | | Rock Tunnel – good construction and conditions | 0.61 | 0.82 | | | Soil Tunnel – poor to average construction | 0.30 | 0.45 | 0.95 | | Soil Tunnel – good construction | 0.50 | 0.70 | | Table 6-5. Tunnel Fragility – Median PGAs – Ground Shaking Hazard Only Tables 6-6 and 6-7 compare the data in Table 6-5 with the data in Tables C-9 to C-12 (limited dataset). As can be seen, the magnitude of the median fragilities are about the same for tunnels of good quality construction, and somewhat lower for tunnels of lower quality construction. The estimated dispersion parameter beta is 0.4 for the slight and moderate damage states, and 0.5 for the heavy damage state (beta includes randomness in tunnel performance and uncertainty in ground motion). The heavy damage state is provided only for tunnels with poor to average conditions, and with the limitations noted in the text above. | Tunnel Type / Damage State | HAZUS (PGA) | Current (PGA) | |----------------------------|-------------|---------------| | Rock | | | | Heavy Damage | | n.a. | | Moderate Damage | 0.80 g | 0.82 g | | Minor or Slight Damage | 0.60 g | 0.61 g | | Cut & Cover or Alluvial | | | | Heavy Damage | | n.a. | | Moderate Damage | 0.70 g | 0.70 g | | Minor Damage | 0.50 g | 0.50 g | Table 6-6. Comparison of Tunnel Fragility Curves (Good Quality Construction) | Tunnel Type / Damage State | HAZUS (PGA) | Current (PGA) | |----------------------------|-------------|---------------| | Rock | | | | Heavy Damage | | 1.10 g | | Moderate Damage | 0.70 g | 0.55 g | | Minor or Slight Damage | 0.50 g | 0.35 g | | Cut & Cover or Alluvial | | | | Heavy Damage | | 0.95 g | | Moderate Damage | 0.55 g | 0.45 g | | Minor Damage | 0.35 g | 0.30 g | Table 6-7. Comparison of Tunnel Fragility Curves (Poor to Average Quality Construction - Conditions) ### 6.4 References Asakura, T., and Sato, Y., Mountain tunnels damage in the 1995 Hyogoken-Naubu earthquake, QR of RTRI, Vol. 39, No. 1, 1998. Architectural Institute of Japan, "Disaster Investigation Reports on the 1974 Izu-hanto-oki Earthquake and the 1978 Izu-Oshima-kinkai Earthquake," pp.183-255, 1980 (in Japanese). Geotechnical Engineering Association, Committee of Hanshin Disaster investigation, Hanshin-Awaji disaster investigation report: Commentary Volume, Section 9, Underground Space, p. 405-440 March, 1996. HAZUS, Earthquake Loss Estimation Methodology, Technical Manual, Volume II, prepared by the National Institute of Building Sciences for Federal Emergency Management Agency, 1997. Kunita, M., Takemata, R., and Lai, Y., "Restoration of a tunnel damaged by earthquake," in Tunneling and Underground Space Technology, Vol. 9, No. 4, pp 439-448, 1994. Kunita, M., et al., "Rehabilitation of Tunnel Damage caused by Noto Peninsula Offshore Earthquake," Tunnels and Underground, Vol.24, No.11, pp.7-13, 1993 (in Japanese). JSCE, "Investigation Report on The Damages by Taisho 12 (1923) Great Kanto Earthquake (Reprint version)," Vol.2:Railroad, Vol.3:Road, 1984 (in Japanese). JSCE, "Investigation Report on The Damages by Showa 39 (1964) Niigata Earthquake," pp.100-103, pp.128-131, p.147, pp.150-151, pp.175-178, pp.210-220, 1966 (in Japanese). JSCE, Investigation Committee of the 1978 Miyagiken-oki Earthquake at Tohoku Branch of the Japan Society of Civil Engineer, "General Report on the 1978 Miyagiken-oki Earthquake," pp.165-168, 1980 (in Japanese). JSCE, "Investigation Report on
The Damages by 1983 Nihonkai-chubu Earthquake," pp.422-423, 1986 (in Japanese). Japan Society for Earthquake Engineering Promotion, "Investigation Report on The 1993 Hokkaido-Nansei-Oki Earthquake," JSEEP NEWS, No.133, 1993. Power, M.S., Rosidi, D., and Kaneshiro, J., Gilstrap, S.D., and Chiou, S.J., Summary and evaluation of procedures for the seismic design of tunnels: Multidisciplinary Center for Earthquake Engineering Research, Draft Technical Report, Setpember 1998, FHWA Contract No. DTFH61-92-C-0012 Task 112-D-5.3c. # 7.0 Water Canal Fragility Formulations A canal will be exposed to the same four types of hazards as other water system components: ground shaking, liquefaction, landslide and fault offset. The liquefaction and landslide hazards must be considered both in terms of external factors affecting the canal, as well as liquefaction / landslide within the canal embankments themselves. The following inventory information about a canal will usually be required in order to assess the seismic performance of a canal. - Geographic alignment of the canal. The various lengths of the canal will usually be named as "reaches", or sometimes marked by "mileposts". Reaches are usually associated with specific in-line hydraulic function of the canal (such as: Reach 1, from pump station 1 to turnout 3, etc.). Since earthquake hazards will not usually be confined to the boundaries for each reach, the canal will usually need to be discretized in shorter intervals to reflect the varying earthquake hazards. - Cross sectional shape of the canal, as it varies along the length. Mark each change in station where the design of the canal changes (from lined to unlined, changes in cross sectional shape, chances in materials used for embankments, etc.) - Location and type of in-line components, such as intake structures, pump stations and control gates. Seismic evaluation of these components using fragility formulations is outside the scope of this report. - Location and type of siphons. Analysis of pipeline and tunnel siphons is covered in Sections 4 and 6 of this report. It must be noted that short lengths of pipeline siphons, often with special boundary conditions, might best be analyzed using strength-of-material formulations rather than strict reliance on the empirical fragility formulations in Sections 4 and 6. This is because the pipeline empirical fragility formulations of Section 4 are best suited to long lengths (10s to 100s of miles) of pipeline. - Location and type of flumes, if any. The seismic evaluation of flumes is not covered in this report. See [Knarr] for examples for examples of the seismic analysis of two flume structures. - Location and type of canal crossings, including bridges and pipelines. - Location and type of turnouts, either side canals or pipelines. - Location and type of nearby facilities, which could be exposed to flooding or excessive waterlogging, should the earthquake damage the canal. - Hydraulic capacity and required flows of the canal. While this report provides no guidance as to how to calculate these values, the assessment of whether a canal is in minor, moderate or major damage states may depend upon how much loss of flow capacity is tolerable, and for what duration in time after the earthquake. # 7.1 Factors that Cause Damage to Canals A set of performance goals is suggested for how to describe the performance of a canal in an earthquake. The ideal performance is "no damage". Given that hydraulic performance of a canal is of key importance, the following descriptions define the damage states for canals under seismic loading: - No damage. The canal has the same hydraulic performance after the earthquake. - Minor damage. Some increase in the leak rate of the canal has occurred. Damage to the canal liner may occur, causing increased friction between water and the liner, and thus lowered hydraulic capacity. The liner damage may be due to PGDs (settlements or lateral spreads due to liquefaction, movement due to landslide, offset movement due to fault offset, or excessive ground shaking). Landslide debris may have entered into the canal causes higher sediment transport, which could cause scour of the liner or earthen embankments. Overall, the canal can be operated at up to 90% of capacity, without having to shut down the canal to make repairs. - Moderate damage. Some increase in the leak rate of the canal has occurred. Damage to the canal liner has occurred, causing increased friction between water and the liner, and thus lowered hydraulic capacity. The liner damage may be due to PGDs (settlements or lateral spreads due to liquefaction, movement due to landslide, offset movement due to fault offset, or excessive ground shaking). Landslide debris may have entered into the canal causes higher sediment transport, which could cause scour of the liner or earthen embankments. Overall, the canal can be operated for the short term at up to 50% to 90% of capacity; however, a shutdown of the canal within a short time period after the earthquake will be required to make repairs. Damage to canal overcrossings may have occurred which requires some sort of temporary shutdown of the canal to make repairs. Damage to bridge abutments could cause constriction of the canal's cross section to such an extent that causes a significant flow restriction. - Major damage. The canal is damaged to such an extent that immediate shutdown of the tunnel is required. The damage may be due to PGDs (settlements or lateral spreads due to liquefaction, movement due to landslide, offset movement due to fault offset, or excessive ground shaking). Landslide debris may have entered into the canal which causes excessive sediment transport, or may block the canal's cross section to such a degree that the flow of water is disrupted, and overflow over the banks of the canal and subsequent flooding can occur. Damage to overcrossings may have occurred which requires immediate shutdown of the canal. Overcrossing damage could include the collapse of highway bridges; leakage of non-potable material pipelines (such as oil, gas, etc.). Damage to bridge abutments could cause constriction of the canal's cross section to such an extent that there is a significant flow restriction which warrants immediate shutdown and repair. ## 7.2 Vulnerability Assessment of Canals A vulnerability assessment of canals can be done as follows: - Establish a spreadsheet which lists the canal reaches at various mileposts where the seismic hazard or the canal design changes. - Calculate the potential for each of the four seismic hazards for each section of the canal. For liquefaction and landslide hazards, the native soils beneath and nearby the canal should be considered, as well as the soil materials that form the embankments of the canal. For in-line tunnels, the hazards include landslide and tunnel portals which can either affect the tunnel, or deposit debris into the canal. - Estimate the potential for cracking of the liner due to ground shaking hazard. The strain in the liner can be estimated using strain = V/c (V = peak ground velocity, c = wave propagation speed) type calculations, with attendant estimate of crack size and spacing. Assess if the cracking due to ground shaking puts the canal in which damage state (likely none or minor). - Estimate the damage state for each length of the canal, based on all four seismic hazards. It is beyond the scope of this report to establish models that can be used for geotechnical assessment of canal embankments. Based on the limited empirical evidence, the following rough guidelines might be useful, lacking detailed geotechnical assessments: - Minor damage to unreinforced liners or unlined embankments may be expected at a rate of 0.1 repairs per kilometer for ground shaking velocities of PGV = 20 to 35 inches per second. The minor damage rate drops to 0.01 repairs per kilometer for ground shaking velocities of PGV = 5 to 15 inches per second, and 0 below that. Damage to reinforced liners is one quarter these rates. Bounds on the damage estimate can be estimated assuming plus 100% to minus 50% at the plus or minus one standard deviation level, respectively. - Moderate damage is expected if lateral or vertical movements of the embankments due to liquefaction / landslide are in the range of 1 to 5 inches. Moderate damage occurs due to fault offset across the canal of 1 to 5 inches. Moderate damage is expected if small debris flows into the canal from adjacent landslides. - Major damage is expected if PGDs of the embankments are predicted to be 6 inches or greater. Major damage occurs due to fault offset across the canal of 6 inches or more. Major damage is expected if a significant amount of debris is predicted to flow into the canal from adjacent landslides. The differentiation of moderate or major damage states for debris flows into the canal should factor in hydraulic constraints caused by the size of the debris flow, potential for scour due to the type of debris, and water quality requirements. #### 7.3 References Bureau of Reclamation, "Linings for irrigation canals," 1963. Knarr. M., "Seismic Modification of Open Flume Structures on the Borel Canal near Lake Isabella, California," *in* Seismic Evaluation and Upgrade of Water Transmission Facilities, Eds. J. Eidinger and E. Avila, TCLEE Monograph No. 15, ASCE, 1999. 7-1a. Typical Canal Section. 7-1d. Typical Deep Cut Canal Section. **Figure 7-1. Typical Canal Cross Sections** # 8.0 In Line Components Various types of "In Line Components" exist along water transmission pipelines. These include portions of the supervisory control and data acquisition (SCADA) system that are located along the conveyance system, and various flow control mechanisms (e.g. valves and gates). Section 8 highlights the main seismic vulnerabilities for these in line components. ## 8.1 Pipeline Valves The fragility information presented in Section 4 includes damage to in line valves along
pipeline systems. Most pipeline valves are buried in the soil along with the pipe. The valves can be of many types, including gate valves, butterfly valves, ball valves, check valves, etc. The fragility algorithms presented in Section 4 include damage that might occur to these valves. Some data is presented in Appendix A with consideration for the breakdown of pipeline damage data in terms of damage to pipe joints, pipe body and appurtenances such as valves, and this could be used as a first order estimate for damage to valves. In a few cases for larger diameter pipes, pipeline valves will be located in buried concrete vaults. Normally, the length of pipe in the buried vault is only 4 to 5 pipeline diameters, and amplified inertial response of the above ground pipe-valve-pipe system within the vault is not significant. However, in cases where there are long runs of pipe, such that the pipe-valve frequency is much less than about 10 hertz, there is potential for increased stresses in the pipeline, and an increased chance for damage. For these cases, it is reasonable to evaluate the pipe-valve system using code-based rules, such as those provided in the ASME B31.1 code. When performing such analyses, care should be taken to account for relative stiffness issues at large pipe to small pipe connections; where pipes enter or leave the concrete vault; and at pipe support locations; these are the areas which may be most prone to damage. # 8.2 SCADA Equipment In line SCADA hardware includes a variety of components, including: - Instrumentation - Power Supply (normal, backup) - Communication components (normal, backup) - Weather enclosures (electrical cabinets and vaults) Many modern SCADA instruments use solid state equipment; the sensor equipment is attached to the pipeline and the signal processing equipment is located in a metal cabinet enclosure. The dominant vulnerabilities for this equipment are: falling over of batteries; dislodging of circuit boards; gross movement of the cabinet enclosure due to inadequate anchorage. The best way to discover the presence of these vulnerabilities is with a site specific inspection. Some SCADA equipment installations include instruments which measure pressure or flow based on the height of water in a tube. During earthquake conditions, hydraulic transients can allow the introduction of air into the pipeline. These hydraulic transients arise from the pipe failure or inertial response of pipes. Once air is introduced into the pipes, some air can reach the instrument location, and cause these types of instruments to provide incorrect readings. While the instrument is not damaged, it will be required to recalibrate the instrument after the earthquake. Communication between the in line equipment and the central SCADA computers is usually by one of two methods: landline telephone or radio. - Landline telephone wires are usually seismically rugged. In some cases they may traverse areas prone to large PGDs. Telephone wires are capable of withstanding large PGDs (often several feet) before they become non-functional. Once the telephone wire reaches the telephone company central office, the signal is usually routed directly to the centralized SCADA computer location; as long as the central office is functional, the signal will reach the SCADA computer location. However, in some cases, the landline may be on a "switched" network, and due to telephone system saturation for the first few days after an earthquake, the signal may be disrupted. - Radio communication networks can be disrupted due to earthquakes. The radio link from the in line component to the central SCADA computer may have to be transmitted via hill top (or building roof) repeater stations. All equipment that supports the radio link must be seismically rugged (adequately bolted is usually sufficient), have adequate backup power, and be located in buildings which will not be heavily damaged. These vulnerabilities are best verified by field investigation. ### 8.3 Canal Gate Structures For canals, there has been some damage to in line gate structures in past earthquakes. The small amount of empirical information for gate structures, and the wide variation in possible arrangement of gate structures, precludes the development of gate-specific fragility curves. Seismic evaluation of gate structures should consider all the seismic hazards (ground shaking and ground deformations), as well as fluid-imposed forces.